6) \( \log _{4}\left(z^{4} \sqrt{x}\right) \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To simplify \( \log _{4}\left(z^{4} \sqrt{x}\right) \), we can apply the properties of logarithms. First, we can split the logarithm of a product: \[ \log_4(z^4 \sqrt{x}) = \log_4(z^4) + \log_4(\sqrt{x}). \] Next, we simplify each term. The logarithm of a power can be expressed as: \[ \log_4(z^4) = 4 \log_4(z), \] And since \(\sqrt{x} = x^{1/2}\), we have: \[ \log_4(\sqrt{x}) = \log_4(x^{1/2}) = \frac{1}{2} \log_4(x). \] Combining these, we get: \[ \log_4(z^{4} \sqrt{x}) = 4 \log_4(z) + \frac{1}{2} \log_4(x). \] Thus, the expression simplifies to: \[ \boxed{4 \log_4(z) + \frac{1}{2} \log_4(x)}. \]