Question
upstudy study bank question image url

Evaluate \( { }_{7} \mathrm{P}_{5} \) and \( { }_{9} \mathrm{C}_{6} \). \( { }_{7} \mathrm{P}_{5}=\square \) \( { }_{9} \mathrm{C}_{6}=\square \)

Ask by Wheeler Wright. in the United States
Jan 06,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ { }_{7} \mathrm{P}_{5} = 2520 \] \[ { }_{9} \mathrm{C}_{6} = 84 \]

Solution

Certainly! Let's evaluate each of the combinatorial expressions step by step. ### 1. Evaluating \( { }_{7} \mathrm{P}_{5} \) **Definition:** \[ { }_{n} \mathrm{P}_{k} = \text{Number of permutations of } n \text{ items taken } k \text{ at a time} \] \[ { }_{n} \mathrm{P}_{k} = \frac{n!}{(n - k)!} \] **Calculation:** \[ { }_{7} \mathrm{P}_{5} = \frac{7!}{(7 - 5)!} = \frac{7!}{2!} \] \[ 7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040 \] \[ 2! = 2 \times 1 = 2 \] \[ { }_{7} \mathrm{P}_{5} = \frac{5040}{2} = 2520 \] **Result:** \[ { }_{7} \mathrm{P}_{5} = 2520 \] --- ### 2. Evaluating \( { }_{9} \mathrm{C}_{6} \) **Definition:** \[ { }_{n} \mathrm{C}_{k} = \text{Number of combinations of } n \text{ items taken } k \text{ at a time} \] \[ { }_{n} \mathrm{C}_{k} = \frac{n!}{k!(n - k)!} \] **Calculation:** \[ { }_{9} \mathrm{C}_{6} = \frac{9!}{6! \times (9 - 6)!} = \frac{9!}{6! \times 3!} \] \[ 9! = 362880 \] \[ 6! = 720 \] \[ 3! = 6 \] \[ { }_{9} \mathrm{C}_{6} = \frac{362880}{720 \times 6} = \frac{362880}{4320} = 84 \] **Result:** \[ { }_{9} \mathrm{C}_{6} = 84 \] --- ### Summary \[ { }_{7} \mathrm{P}_{5} = 2520 \] \[ { }_{9} \mathrm{C}_{6} = 84 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To evaluate \( { }_{7} \mathrm{P}_{5} \), we use the formula for permutations, which is given by: \[ _{n}P_{r} = \frac{n!}{(n-r)!} \] Thus, \[ _{7}P_{5} = \frac{7!}{(7-5)!} = \frac{7!}{2!} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1} = 7 \times 6 \times 5 \times 4 \times 3 = 2520 \] Now, for \( { }_{9} \mathrm{C}_{6} \), we use the combination formula: \[ _{n}C_{r} = \frac{n!}{r!(n-r)!} \] Thus, \[ _{9}C_{6} = \frac{9!}{6!(9-6)!} = \frac{9!}{6! \cdot 3!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = \frac{504}{6} = 84 \] Putting it all together: \[ { }_{7} \mathrm{P}_{5} = 2520 \] \[ { }_{9} \mathrm{C}_{6} = 84 \]

Related Questions

Latest Probability Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy