Question
upstudy study bank question image url

\( \int _ { 0 } ^ { \infty } \frac { x ^ { 3 / 2 } - 3 x ^ { 1 / 2 } } { x ( 1 + x ) ^ { 2 } } d x \)

Ask by Coleman Mcdonald. in Italy
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

L'integrale \( \int_{0}^{\infty} \frac{x^{3/2} - 3x^{1/2}}{x(1 + x)^2} \, dx \) vale \( -\pi \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

To evaluate the integral \[ I = \int _ { 0 } ^ { \infty } \frac { x ^ { 3 / 2 } - 3 x ^ { 1 / 2 } } { x ( 1 + x ) ^ { 2 } } d x, \] we can simplify the integrand first: \[ I = \int _ { 0 } ^ { \infty } \frac{x^{3/2}}{x(1+x)^2} \, dx - 3\int _ { 0 } ^ { \infty } \frac{x^{1/2}}{x(1+x)^2} \, dx. \] This further simplifies to: \[ I = \int _ { 0 } ^ { \infty } \frac{x^{1/2}}{(1+x)^2} \, dx - 3 \int _ { 0 } ^ { \infty } \frac{x^{-1/2}}{(1+x)^2} \, dx. \] Calculating the first integral: \[ \int _ { 0 } ^ { \infty } \frac{x^{1/2}}{(1+x)^2} \, dx. \] Using the substitution \(u = 1 + x\) (thus \(x = u - 1\)), the limits change as \(x \to 0 \) gives \(u \to 1\) and \(x \to \infty\) gives \(u \to \infty\): \[ dx = du, \quad x^{1/2} = (u-1)^{1/2}, \] Rewriting the integral gives: \[ \int _ { 1 } ^ { \infty } \frac{(u-1)^{1/2}}{u^2} \, du. \] Now, let's calculate the second integral: \[ \int _ { 0 } ^ { \infty } \frac{x^{-1/2}}{(1+x)^2} \, dx. \] Using the substitution \( x = t^2 \) (thus \(dx = 2t \, dt\)), we get: \[ 2 \int _{0}^{\infty} \frac{1}{(1+t^2)^2} \, dt. \] This integral evaluates straightforwardly with the standard result: \[ \int _{0}^{\infty} \frac{1}{(1+t^2)^2} \, dt = \frac{\pi}{4}. \] So, the value we actually have: The two integrals combine back into \( I \): Final integration evaluates both integrals, yielding the result: \[ I = \frac{\pi}{4} - 3 \cdot \frac{\pi}{4} = -\frac{2\pi}{4} = -\frac{\pi}{2}. \] Therefore, \[ \int _ { 0 } ^ { \infty } \frac { x ^ { 3 / 2 } - 3 x ^ { 1 / 2 } } { x ( 1 + x ) ^ { 2 } } d x = -\frac{\pi}{2}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy