Question
upstudy study bank question image url

Ejercicio 4 a) \( [8 \mathrm{p}] \) Obtenga una ecuación punto-normal del plano que contiene a los puntos \( P, Q \) y \( R \) : \[ P(0,1,-1) \quad O(2,-1,-3) \quad R(-1,4,2) \]

Ask by Hart Elliott. in Argentina
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La ecuación punto-normal del plano que contiene los puntos \( P(0,1,-1) \), \( O(2,-1,-3) \) y \( R(-1,4,2) \) es: \[ y - z = 2 \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

Para obtener la ecuación punto-normal del plano que contiene los puntos \( P(0,1,-1) \), \( Q(2,-1,-3) \), y \( R(-1,4,2) \), primero necesitamos encontrar dos vectores en el plano. Estos se pueden obtener restando las coordenadas de los puntos: 1. Primero, calculamos los vectores \( \vec{PQ} \) y \( \vec{PR} \): \[ \vec{PQ} = Q - P = (2 - 0, -1 - 1, -3 + 1) = (2, -2, -2) \] \[ \vec{PR} = R - P = (-1 - 0, 4 - 1, 2 + 1) = (-1, 3, 3) \] 2. Luego, calculamos el producto cruzado de \( \vec{PQ} \) y \( \vec{PR} \) para obtener el vector normal del plano \( \vec{n} \): \[ \vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & -2 \\ -1 & 3 & 3 \end{vmatrix} \] Al resolver el determinante: \[ \vec{n} = \hat{i}((-2)(3) - (-2)(3)) - \hat{j}(2 \cdot 3 - (-2)(-1)) + \hat{k}(2 \cdot 3 - (-2)(-1)) \] \[ = \hat{i}(-6 + 6) - \hat{j}(6 - 2) + \hat{k}(6 - 2) = \hat{i}(0) - \hat{j}(4) + \hat{k}(4) \] \[ = (0, -4, 4) \] 3. Ahora que tenemos el vector normal \( \vec{n}(0, -4, 4) \), podemos usar el punto \( P(0,1,-1) \) para escribir la ecuación del plano en la forma: \[ 0(x - 0) - 4(y - 1) + 4(z + 1) = 0 \] Simplificando esto, tenemos: \[ -4y + 4z + 4 = 0 \quad \text{o} \quad 4z - 4y + 4 = 0 \quad \text{o} \quad z - y + 1 = 0 \] Por lo tanto, la ecuación punto-normal del plano es \( z - y + 1 = 0 \).

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy