Evaluate the indefinite integral. \( \int \frac{\sin \left(\frac{8}{x}\right)}{x^{2}} d x=\square+C \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To evaluate the indefinite integral \[ \int \frac{\sin \left(\frac{8}{x}\right)}{x^{2}} d x, \] we can apply the substitution method. Let us set \[ u = \frac{8}{x} \quad \Rightarrow \quad x = \frac{8}{u} \quad \Rightarrow \quad dx = -\frac{8}{u^2} du. \] Now, we can rewrite the integral in terms of \(u\): \[ \int \frac{\sin\left(u\right)}{\left(\frac{8}{u}\right)^{2}} \left(-\frac{8}{u^2}\right) du = -8 \int \frac{\sin(u)}{\frac{64}{u^2}} \cdot \frac{8}{u^2} du. \] This simplifies to: \[ \int \sin(u) du, \] which is a standard integral. The integral of \(\sin(u)\) is: \[ -\cos(u) + C. \] Now, substituting back \(u = \frac{8}{x}\), we have: \[ -\cos\left(\frac{8}{x}\right) + C. \] Thus, the final answer is: \[ \int \frac{\sin \left(\frac{8}{x}\right)}{x^{2}} d x = -\cos\left(\frac{8}{x}\right) + C. \]