Find the following trigonometric ratios of \( \theta \) if \( \begin{aligned} \sin (\theta) & =\frac{4}{5} \text { and } \cos (\theta)=\frac{3}{5} \text {. Answer exactly. } \\ \tan (\theta) & =\square \\ \cot (\theta) & =\square \\ \sec (\theta) & =\square \\ \csc (\theta) & =\square\end{aligned} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the remaining trigonometric ratios, we start with the given values of \( \sin(\theta) \) and \( \cos(\theta) \). 1. **Tangent**: \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] 2. **Cotangent**: \[ \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{1}{\frac{4}{3}} = \frac{3}{4} \] 3. **Secant**: \[ \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{1}{\frac{3}{5}} = \frac{5}{3} \] 4. **Cosecant**: \[ \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{1}{\frac{4}{5}} = \frac{5}{4} \] Now, compiling all the values we have: \[ \begin{aligned} \tan(\theta) & = \frac{4}{3} \\ \cot(\theta) & = \frac{3}{4} \\ \sec(\theta) & = \frac{5}{3} \\ \csc(\theta) & = \frac{5}{4} \end{aligned} \]