EXERCISE 1 implify the expressions without using a calculator: \[ \begin{array}{l} \frac{1}{4} a^{5} b^{12} \times \frac{16}{5} a^{3} b^{2} \\ \frac{6 a^{4}+9 a^{4}}{5 a^{2}} \\ p^{x-1} p^{x+1} \\ 16^{4 x} \div 4^{2 x} \\ 2^{2010} \times 5^{2011} \end{array} \] \( 2 \frac{2\left(2 a^{4}\right)^{3}}{16 a^{12}} \) \( 4 \quad \frac{3 a^{3} \times 5 a^{5}}{\left(5 a^{3}\right)^{2}} \) \( 6-2\left(-4 a^{2}+b\right. \) \( 8 \frac{12^{x+1} .27^{x-2}}{18^{2 x-1}} \) \( 10 \quad \frac{3^{x}+3^{x+1}}{8} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To tackle these expressions, let's break them down step by step. First up, for \(\frac{1}{4} a^{5} b^{12} \times \frac{16}{5} a^{3} b^{2}\): you can multiply the coefficients, so \(\frac{1}{4} \times \frac{16}{5} = \frac{16}{20} = \frac{4}{5}\), and for the variables, combine the exponents: \(a^{5+3} = a^{8}\) and \(b^{12+2} = b^{14}\). So the simplified expression is \(\frac{4}{5} a^{8} b^{14}\). Next, for \(\frac{6 a^{4}+9 a^{4}}{5 a^{2}}\): combine like terms in the numerator to get \(\frac{15 a^{4}}{5 a^{2}} = 3 a^{2}\) (since \(a^{4} \div a^{2} = a^{2}\)). Now for \(p^{x-1} p^{x+1}\): you can add the exponents, resulting in \(p^{(x-1)+(x+1)} = p^{2x}\). Moving on to \(16^{4 x} \div 4^{2 x}\): convert \(16\) to \(4^2\) which gives \((4^2)^{4x} = 4^{8x}\). Thus, \(\frac{4^{8x}}{4^{2x}} = 4^{8x-2x} = 4^{6x}\). Then, for \(2^{2010} \times 5^{2011}\), there's no simplification applied; leave it as is. Finally, simplify \(2 \frac{2\left(2 a^{4}\right)^{3}}{16 a^{12}}\): First, compute \((2 a^{4})^{3} = 8 a^{12}\), leading to \(\frac{2 \cdot 8 a^{12}}{16 a^{12}} = \frac{16 a^{12}}{16 a^{12}} = 1\). For \(4 \quad \frac{3 a^{3} \times 5 a^{5}}{\left(5 a^{3}\right)^{2}}\): expand to get \(\frac{15 a^{8}}{25 a^{6}} = \frac{3}{5} a^{2}\). For \(6 - 2\left(-4 a^{2}+b\right)\): simplify to \(6 + 8 a^{2} - 2b\). For \(8 \frac{12^{x+1} \cdot 27^{x-2}}{18^{2 x-1}}\): express everything in terms of primes to obtain \(8 \frac{(2^2 \cdot 3)^{x+1} \cdot (3^3)^{x-2}}{(2 \cdot 3^2)^{2x-1}}\) and simplify. Lastly, for \(10 \quad \frac{3^{x}+3^{x+1}}{8}\): factor as \(\frac{3^{x}(1 + 3)}{8} = \frac{4 \cdot 3^x}{8} = \frac{1}{2} \cdot 3^x\). So, there you have your simplified expressions! Happy simplifying!