Question
upstudy study bank question image url

\( \begin{array}{l} 52 x+42 x+6 x+6 x=-3+15 \\ x=-31 \\ 52 \\ \text { 2) } 5 x+3(x+1)=7-5(2 x+3) \\ 5 x+3 x+2=7-10 x-15\end{array} \)

Ask by Pritchard Bolton. in Ecuador
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**1) \(52x + 42x + 6x + 6x = -3 + 15\)** - Combina términos: \(106x = 12\) - Despeja \(x\): \(x = \frac{12}{106} = \frac{6}{53}\) **Respuesta:** \(x = \frac{6}{53}\) --- **2) \(5x + 3(x + 1) = 7 - 5(2x + 3)\)** - Expande: \(8x + 3 = -10x - 8\) - Combina términos: \(18x = -11\) - Despeja \(x\): \(x = -\frac{11}{18}\) **Respuesta:** \(x = -\frac{11}{18}\)

Solution

Claro, resolveremos las ecuaciones que has proporcionado paso a paso en español. --- ### **1) \(52x + 42x + 6x + 6x = -3 + 15\)** **Paso 1:** Combina los términos semejantes en el lado izquierdo. \[ 52x + 42x + 6x + 6x = (52 + 42 + 6 + 6)x = 106x \] **Paso 2:** Simplifica el lado derecho. \[ -3 + 15 = 12 \] **Paso 3:** Plantea la ecuación simplificada. \[ 106x = 12 \] **Paso 4:** Despeja \(x\) dividiendo ambos lados por 106. \[ x = \frac{12}{106} = \frac{6}{53} \] **Respuesta:** \(x = \frac{6}{53}\) --- ### **2) \(5x + 3(x + 1) = 7 - 5(2x + 3)\)** **Paso 1:** Expande los términos dentro de los paréntesis. \[ 5x + 3x + 3 = 7 - 10x - 15 \] **Paso 2:** Combina los términos semejantes en ambos lados. \[ 8x + 3 = -10x - 8 \] **Paso 3:** Lleva todos los términos con \(x\) a un lado y los constantes al otro. \[ 8x + 10x = -8 - 3 \] \[ 18x = -11 \] **Paso 4:** Despeja \(x\) dividiendo ambos lados por 18. \[ x = \frac{-11}{18} \] **Respuesta:** \(x = -\frac{11}{18}\) --- Si tienes alguna otra pregunta o necesitas más ayuda con otros ejercicios, no dudes en decírmelo.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Did you know that simplifying equations like this one has roots in ancient mathematics? The Babylonians were some of the first to use algebra around 2000 BC, employing a method akin to what we do now, balancing equations and solving for unknowns. They didn’t have a symbol for variables, but they sure knew how to wiggle their numbers around to find the answers! In the world today, these algebraic techniques are invaluable, whether you're budgeting money, determining distances in GPS, or even coding in software development! Mastering these skills helps enhance logical reasoning and problem-solving abilities, making you a valuable asset in any career from engineering to finance. So next time you delve into algebra, remember you're part of a centuries-old tradition that has real-world effects!

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy