Question
upstudy study bank question image url

Sumnnative aSSeSSMnent: EX Sumplify the following, without using a calculat 1. \( \frac{4^{a}-2^{2 a+1}}{\left(2^{a}\right)^{2}-2^{a+3} \cdot 2^{a}} \) 2. \( \left(\frac{1}{3^{n-1}} \frac{1}{\left.3^{n+1}\right)^{\frac{1}{n}}}\right. \) 3. \( \frac{\sqrt{a}-a}{a^{3}-\sqrt{a^{5}}} \) 4. \( \frac{9^{2 n+1} \cdot 6^{2 n-3}}{3^{5 n-2} \cdot 2 \cdot 3^{n} \cdot 4^{n-2}} \) 5. \( \sqrt[3]{27^{2}}-\frac{2}{8^{-\frac{2}{3}}}+\frac{\sqrt[5]{2}}{4^{-\frac{2}{5}}} \) 6. \( \frac{3^{2 x+1}+9^{x}}{3^{x} \cdot 3^{x+1}-\left(3^{x}\right)^{2}} \) 7. \( \frac{3 x^{2}\left(3^{x-1}\right)^{x+1}}{9^{x^{x+1}}} \) 8. \( \frac{2^{x+1}-3 \cdot 2^{x-1}}{2^{x}-2^{x-2}} \) \( 3^{x}-\left(\frac{1}{2}\right)^{x} \)

Ask by Crawford Cook. in South Africa
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( \frac{4^{a}-2^{2 a+1}}{\left(2^{a}\right)^{2}-2^{a+3} \cdot 2^{a}} = \frac{1}{7} \) 2. \( \left(\frac{1}{3^{n-1}} \cdot \frac{1}{(3^{n+1})^{\frac{1}{n}}}\right) = \frac{1}{3^{n + \frac{1}{n}}} \) 3. \( \frac{\sqrt{a}-a}{a^{3}-\sqrt{a^{5}}} = \frac{1 - a^{1/2}}{a^2(a^{3/2} - 1)} \) 4. \( \frac{9^{2 n+1} \cdot 6^{2 n-3}}{3^{5 n-2} \cdot 2 \cdot 3^{n} \cdot 4^{n-2}} = 3 \) 5. \( \sqrt[3]{27^{2}}-\frac{2}{8^{-\frac{2}{3}}}+\frac{\sqrt[5]{2}}{4^{-\frac{2}{5}}} = 9 - 8 + 2 = 3 \) 6. \( \frac{3^{2 x+1}+9^{x}}{3^{x} \cdot 3^{x+1}-\left(3^{x}\right)^{2}} = \frac{3^{2x+1} + 3^{2x}}{3^{2x+1} - 3^{2x}} = \frac{3^{2x}(3 + 1)}{3^{2x}(3 - 1)} = \frac{4}{2} = 2 \) 7. \( \frac{3 x^{2}\left(3^{x-1}\right)^{x+1}}{9^{x^{x+1}}} = \frac{3 x^{2} \cdot 3^{(x-1)(x+1)}}{3^{2x^{x+1}}} = \frac{3 x^{2} \cdot 3^{x^2 - 1}}{3^{2x^{x+1}}} = 3^{x^2 - 1 - 2x^{x+1}} \cdot x^{2} \) 8. \( \frac{2^{x+1}-3 \cdot 2^{x-1}}{2^{x}-2^{x-2}} = \frac{2^{x} \cdot 2 - 3 \cdot 2^{x-1}}{2^{x} - 2^{x-2}} = \frac{2^{x}(2 - \frac{3}{2})}{2^{x}(1 - \frac{1}{4})} = \frac{2^{x} \cdot \frac{1}{2}}{2^{x} \cdot \frac{3}{4}} = \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{2}{3} \) 9. \( 3^{x} - \left(\frac{1}{2}\right)^{x} = 3^{x} - 2^{-x} \)

Solution

Let's simplify each expression step by step. ### 1. Simplify \( \frac{4^{a}-2^{2 a+1}}{\left(2^{a}\right)^{2}-2^{a+3} \cdot 2^{a}} \) **Step 1:** Rewrite \( 4^a \) as \( (2^2)^a = 2^{2a} \). **Step 2:** Rewrite \( 2^{2a+1} \) as \( 2^{2a} \cdot 2^1 = 2^{2a} \cdot 2 \). **Step 3:** The numerator becomes: \[ 2^{2a} - 2^{2a+1} = 2^{2a} - 2 \cdot 2^{2a} = 2^{2a}(1 - 2) = -2^{2a} \] **Step 4:** The denominator simplifies as follows: \[ (2^a)^2 - 2^{a+3} \cdot 2^a = 2^{2a} - 2^{a+3+a} = 2^{2a} - 2^{2a+3} = 2^{2a}(1 - 2^3) = 2^{2a}(1 - 8) = -7 \cdot 2^{2a} \] **Step 5:** Combine the results: \[ \frac{-2^{2a}}{-7 \cdot 2^{2a}} = \frac{1}{7} \] ### 2. Simplify \( \left(\frac{1}{3^{n-1}} \cdot \frac{1}{(3^{n+1})^{\frac{1}{n}}}\right) \) **Step 1:** Rewrite the second term: \[ (3^{n+1})^{\frac{1}{n}} = 3^{\frac{n+1}{n}} = 3^{1 + \frac{1}{n}} \] **Step 2:** The expression becomes: \[ \frac{1}{3^{n-1}} \cdot \frac{1}{3^{1 + \frac{1}{n}}} = \frac{1}{3^{n-1 + 1 + \frac{1}{n}}} = \frac{1}{3^{n + \frac{1}{n}}} \] ### 3. Simplify \( \frac{\sqrt{a}-a}{a^{3}-\sqrt{a^{5}}} \) **Step 1:** Rewrite \( \sqrt{a} \) as \( a^{1/2} \) and \( \sqrt{a^5} \) as \( a^{5/2} \). **Step 2:** The numerator becomes: \[ a^{1/2} - a = a^{1/2} - a^{2/2} = a^{1/2}(1 - a^{1/2}) \] **Step 3:** The denominator becomes: \[ a^3 - a^{5/2} = a^{5/2}(a^{3/2} - 1) \] **Step 4:** Combine the results: \[ \frac{a^{1/2}(1 - a^{1/2})}{a^{5/2}(a^{3/2} - 1)} = \frac{1 - a^{1/2}}{a^2(a^{3/2} - 1)} \] ### 4. Simplify \( \frac{9^{2 n+1} \cdot 6^{2 n-3}}{3^{5 n-2} \cdot 2 \cdot 3^{n} \cdot 4^{n-2}} \) **Step 1:** Rewrite \( 9^{2n+1} \) as \( (3^2)^{2n+1} = 3^{4n+2} \) and \( 6^{2n-3} = (2 \cdot 3)^{2n-3} = 2^{2n-3} \cdot 3^{2n-3} \). **Step 2:** The numerator becomes: \[ 3^{4n+2} \cdot 2^{2n-3} \cdot 3^{2n-3} = 2^{2n-3} \cdot 3^{4n+2 + 2n - 3} = 2^{2n-3} \cdot 3^{6n - 1} \] **Step 3:** The denominator becomes: \[ 3^{5n-2} \cdot 2 \cdot 3^{n} \cdot 4^{n-2} = 3^{5n-2 + n} \cdot 2 \cdot (2^2)^{n-2} = 3^{6n-2} \cdot 2^{1 + 2n - 4} = 3^{6n-2} \cdot 2^{2n - 3} \] **Step 4:** Combine the results: \[ \frac{2^{2n-3} \cdot 3^{6n-1}}{3^{6n-2} \cdot 2^{2n-3}} = 3^{(6n-1) - (6n-2)} = 3^{1} = 3 \] ### 5. Simplify \( \sqrt[3]{27^{2}}-\frac{2}{8^{-\frac{2}{3}}}+\frac{\sqrt[5]{2}}{4^{-\frac{2}{5}}} \) **Step 1:** Calculate \( \sqrt[3]{27^2} = \sqrt[3]{(3^3)^2} = 3^2 = 9 \). **Step 2:** Calculate \( 8^{-\frac{2}{3}} = (2^3)^{-\frac{2}{3}} = 2^{-2} = \frac{1}{4} \), so \( \frac{2}{8^{-\frac{2}{3}}} = 2 \cdot 4 = 8 \). **Step 3:** Calculate \( 4^{-\frac{2}{5}} = (2^2)^{-\frac{2}{5}} = 2^{-\frac{4}{5}} \), so \( \frac{\sqrt[5]{2}}{4^{-\frac{2}{5}}} = \frac{2^{\frac{1}{5}}}{2^{-\frac{4}{5}}} = 2^{\frac{1}{5} + \frac{4}{5}} = 2^{1} = 2 \). **Step 4

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To simplify these expressions, it helps to remember that exponents can be manipulated using properties such as \( a^m \cdot a^n = a^{m+n} \) and \( \frac{a^m}{a^n} = a^{m-n} \). Additionally, knowing that \( 9 = 3^2 \) and \( 27 = 3^3 \) can significantly ease the process, allowing you to express everything in terms of a single base where possible. When tackling these types of problems, it’s easy to overlook elementary simplifications. Always check if you can factor common terms first or if there are opportunities to combine like bases. For example, simplifying \( 2^{a-1} \) to \( \frac{1}{2} \times 2^{a} \) may help reveal a hidden factor, or breaking an equation into smaller pieces can sometimes unveil an easier path to simplification. Happy simplifying!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy