Answer
1. \( \frac{4^{a}-2^{2 a+1}}{\left(2^{a}\right)^{2}-2^{a+3} \cdot 2^{a}} = \frac{1}{7} \)
2. \( \left(\frac{1}{3^{n-1}} \cdot \frac{1}{(3^{n+1})^{\frac{1}{n}}}\right) = \frac{1}{3^{n + \frac{1}{n}}} \)
3. \( \frac{\sqrt{a}-a}{a^{3}-\sqrt{a^{5}}} = \frac{1 - a^{1/2}}{a^2(a^{3/2} - 1)} \)
4. \( \frac{9^{2 n+1} \cdot 6^{2 n-3}}{3^{5 n-2} \cdot 2 \cdot 3^{n} \cdot 4^{n-2}} = 3 \)
5. \( \sqrt[3]{27^{2}}-\frac{2}{8^{-\frac{2}{3}}}+\frac{\sqrt[5]{2}}{4^{-\frac{2}{5}}} = 9 - 8 + 2 = 3 \)
6. \( \frac{3^{2 x+1}+9^{x}}{3^{x} \cdot 3^{x+1}-\left(3^{x}\right)^{2}} = \frac{3^{2x+1} + 3^{2x}}{3^{2x+1} - 3^{2x}} = \frac{3^{2x}(3 + 1)}{3^{2x}(3 - 1)} = \frac{4}{2} = 2 \)
7. \( \frac{3 x^{2}\left(3^{x-1}\right)^{x+1}}{9^{x^{x+1}}} = \frac{3 x^{2} \cdot 3^{(x-1)(x+1)}}{3^{2x^{x+1}}} = \frac{3 x^{2} \cdot 3^{x^2 - 1}}{3^{2x^{x+1}}} = 3^{x^2 - 1 - 2x^{x+1}} \cdot x^{2} \)
8. \( \frac{2^{x+1}-3 \cdot 2^{x-1}}{2^{x}-2^{x-2}} = \frac{2^{x} \cdot 2 - 3 \cdot 2^{x-1}}{2^{x} - 2^{x-2}} = \frac{2^{x}(2 - \frac{3}{2})}{2^{x}(1 - \frac{1}{4})} = \frac{2^{x} \cdot \frac{1}{2}}{2^{x} \cdot \frac{3}{4}} = \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{2}{3} \)
9. \( 3^{x} - \left(\frac{1}{2}\right)^{x} = 3^{x} - 2^{-x} \)
Solution
Let's simplify each expression step by step.
### 1. Simplify \( \frac{4^{a}-2^{2 a+1}}{\left(2^{a}\right)^{2}-2^{a+3} \cdot 2^{a}} \)
**Step 1:** Rewrite \( 4^a \) as \( (2^2)^a = 2^{2a} \).
**Step 2:** Rewrite \( 2^{2a+1} \) as \( 2^{2a} \cdot 2^1 = 2^{2a} \cdot 2 \).
**Step 3:** The numerator becomes:
\[
2^{2a} - 2^{2a+1} = 2^{2a} - 2 \cdot 2^{2a} = 2^{2a}(1 - 2) = -2^{2a}
\]
**Step 4:** The denominator simplifies as follows:
\[
(2^a)^2 - 2^{a+3} \cdot 2^a = 2^{2a} - 2^{a+3+a} = 2^{2a} - 2^{2a+3} = 2^{2a}(1 - 2^3) = 2^{2a}(1 - 8) = -7 \cdot 2^{2a}
\]
**Step 5:** Combine the results:
\[
\frac{-2^{2a}}{-7 \cdot 2^{2a}} = \frac{1}{7}
\]
### 2. Simplify \( \left(\frac{1}{3^{n-1}} \cdot \frac{1}{(3^{n+1})^{\frac{1}{n}}}\right) \)
**Step 1:** Rewrite the second term:
\[
(3^{n+1})^{\frac{1}{n}} = 3^{\frac{n+1}{n}} = 3^{1 + \frac{1}{n}}
\]
**Step 2:** The expression becomes:
\[
\frac{1}{3^{n-1}} \cdot \frac{1}{3^{1 + \frac{1}{n}}} = \frac{1}{3^{n-1 + 1 + \frac{1}{n}}} = \frac{1}{3^{n + \frac{1}{n}}}
\]
### 3. Simplify \( \frac{\sqrt{a}-a}{a^{3}-\sqrt{a^{5}}} \)
**Step 1:** Rewrite \( \sqrt{a} \) as \( a^{1/2} \) and \( \sqrt{a^5} \) as \( a^{5/2} \).
**Step 2:** The numerator becomes:
\[
a^{1/2} - a = a^{1/2} - a^{2/2} = a^{1/2}(1 - a^{1/2})
\]
**Step 3:** The denominator becomes:
\[
a^3 - a^{5/2} = a^{5/2}(a^{3/2} - 1)
\]
**Step 4:** Combine the results:
\[
\frac{a^{1/2}(1 - a^{1/2})}{a^{5/2}(a^{3/2} - 1)} = \frac{1 - a^{1/2}}{a^2(a^{3/2} - 1)}
\]
### 4. Simplify \( \frac{9^{2 n+1} \cdot 6^{2 n-3}}{3^{5 n-2} \cdot 2 \cdot 3^{n} \cdot 4^{n-2}} \)
**Step 1:** Rewrite \( 9^{2n+1} \) as \( (3^2)^{2n+1} = 3^{4n+2} \) and \( 6^{2n-3} = (2 \cdot 3)^{2n-3} = 2^{2n-3} \cdot 3^{2n-3} \).
**Step 2:** The numerator becomes:
\[
3^{4n+2} \cdot 2^{2n-3} \cdot 3^{2n-3} = 2^{2n-3} \cdot 3^{4n+2 + 2n - 3} = 2^{2n-3} \cdot 3^{6n - 1}
\]
**Step 3:** The denominator becomes:
\[
3^{5n-2} \cdot 2 \cdot 3^{n} \cdot 4^{n-2} = 3^{5n-2 + n} \cdot 2 \cdot (2^2)^{n-2} = 3^{6n-2} \cdot 2^{1 + 2n - 4} = 3^{6n-2} \cdot 2^{2n - 3}
\]
**Step 4:** Combine the results:
\[
\frac{2^{2n-3} \cdot 3^{6n-1}}{3^{6n-2} \cdot 2^{2n-3}} = 3^{(6n-1) - (6n-2)} = 3^{1} = 3
\]
### 5. Simplify \( \sqrt[3]{27^{2}}-\frac{2}{8^{-\frac{2}{3}}}+\frac{\sqrt[5]{2}}{4^{-\frac{2}{5}}} \)
**Step 1:** Calculate \( \sqrt[3]{27^2} = \sqrt[3]{(3^3)^2} = 3^2 = 9 \).
**Step 2:** Calculate \( 8^{-\frac{2}{3}} = (2^3)^{-\frac{2}{3}} = 2^{-2} = \frac{1}{4} \), so \( \frac{2}{8^{-\frac{2}{3}}} = 2 \cdot 4 = 8 \).
**Step 3:** Calculate \( 4^{-\frac{2}{5}} = (2^2)^{-\frac{2}{5}} = 2^{-\frac{4}{5}} \), so \( \frac{\sqrt[5]{2}}{4^{-\frac{2}{5}}} = \frac{2^{\frac{1}{5}}}{2^{-\frac{4}{5}}} = 2^{\frac{1}{5} + \frac{4}{5}} = 2^{1} = 2 \).
**Step 4
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution