Find the last two digits of \( 53^{51^{49^{\cdots 1}}} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To find the last two digits of \( 53^{51^{49^{\cdots 1}}} \), we need to compute \( 53^{51^{49^{\cdots 1}}} \mod 100 \). Noticing that \( 53 \equiv 53 \mod 100 \), we focus on calculating \( 53^n \mod 100 \), where \( n = 51^{49^{\cdots 1}} \). Using the Chinese Remainder Theorem, we will first calculate \( 53^n \mod 4 \) and \( 53^n \mod 25 \) and then combine the results. ### Step 1: Calculation modulo 4 Since \( 53 \equiv 1 \mod 4 \), \[ 53^n \equiv 1^n \equiv 1 \mod 4. \] ### Step 2: Calculation modulo 25 Next, we compute \( 53^n \mod 25 \). First, reduce \( 53 \) modulo \( 25 \): \[ 53 \equiv 3 \mod 25. \] We now calculate \( 3^n \mod 25 \). By Euler's theorem, since \( \phi(25) = 20 \), we need \( n \mod 20 \). Thus we need to compute \( 51^{49^{\cdots 1}} \mod 20 \). #### Finding \( n \mod 20 \) Let's calculate \( 51 \mod 20 \): \[ 51 \equiv 11 \mod 20. \] We now need to reduce \( 11^{49^{47^{\cdots 1}}} \mod 20 \). Again applying Euler’s theorem, since \( \phi(20) = 8 \), we calculate \( 49^{47^{\cdots 1}} \mod 8 \). ##### Finding \( 49 \mod 8 \) Calculating \( 49 \mod 8 \): \[ 49 \equiv 1 \mod 8. \] So, for any power of \( 1 \), \[ 49^{47^{\cdots 1}} \equiv 1 \mod 8. \] Now we have \[ n \equiv 11^{1} \equiv 11 \mod 20. \] #### Final Calculation for \( 3^n \mod 25 \) We will calculate \( 3^{11} \mod 25 \): \[ 3^1 = 3, \] \[ 3^2 = 9, \] \[ 3^3 = 27 \equiv 2 \mod 25, \] \[ 3^4 = 3 \times 2 = 6, \] \[ 3^5 = 3 \times 6 = 18, \] \[ 3^6 = 3 \times 18 = 54 \equiv 4 \mod 25, \] \[ 3^7 = 3 \times 4 = 12, \] \[ 3^8 = 3 \times 12 = 36 \equiv 11 \mod 25, \] \[ 3^9 = 3 \times 11 = 33 \equiv 8 \mod 25, \] \[ 3^{10} = 3 \times 8 = 24 \equiv -1 \mod 25, \] \[ 3^{11} = 3 \times (-1) = -3 \equiv 22 \mod 25. \] ### Step 3: Combine results using CRT We have established: \[ 53^n \equiv 1 \mod 4, \] \[ 53^n \equiv 22 \mod 25. \] Let \( x \) be our solution such that: \[ x \equiv 1 \mod 4, \] \[ x \equiv 22 \mod 25. \] Using the method of successive substitutions, we express \( x \) as: \[ x = 25k + 22. \] Substituting into the first congruence: \[ 25k + 22 \equiv 1 \mod 4. \] Calculating \( 25 \mod 4 \): \[ 25 \equiv 1 \mod 4, \] thus, \[ k + 2 \equiv 1 \mod 4 \implies k \equiv -1 \equiv 3 \mod 4. \] Setting \( k = 4m + 3 \) for integer \( m \), we substitute