Question

\( \int _{}^{}\frac{\sqrt {x}}{7x^{5}} d x \)

Ask by Love Mccarthy. in Mexico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La integral \( \int \frac{\sqrt{x}}{7x^{5}} \, dx \) se simplifica a \( -\frac{2}{49} x^{-7/2} + C \), donde \( C \) es la constante de integración.

Solution

Para resolver la integral: \[ \int \frac{\sqrt{x}}{7x^{5}} \, dx \] **Paso 1:** Simplificamos la expresión dentro de la integral. \[ \frac{\sqrt{x}}{7x^{5}} = \frac{x^{1/2}}{7x^{5}} = \frac{1}{7} x^{1/2 - 5} = \frac{1}{7} x^{-9/2} \] Así, la integral se convierte en: \[ \frac{1}{7} \int x^{-9/2} \, dx \] **Paso 2:** Integrar \( x^{-9/2} \). La integral de \( x^n \) respecto a \( x \) es \( \frac{x^{n+1}}{n+1} + C \), siempre que \( n \neq -1 \). \[ \frac{1}{7} \int x^{-9/2} \, dx = \frac{1}{7} \left( \frac{x^{-7/2}}{-7/2} \right) + C \] **Paso 3:** Simplificamos la expresión resultante. \[ \frac{1}{7} \left( \frac{x^{-7/2}}{-7/2} \right) = \frac{1}{7} \cdot \left( -\frac{2}{7} x^{-7/2} \right) = -\frac{2}{49} x^{-7/2} \] **Paso 4:** Expresar la respuesta de forma más sencilla. \[ -\frac{2}{49} x^{-7/2} + C = -\frac{2}{49 \, x^{7/2}} + C = -\frac{2}{49 \sqrt{x^{7}}} + C \] **Respuesta Final:** \[ \int \frac{\sqrt{x}}{7x^{5}} \, dx = -\frac{2}{49} x^{-7/2} + C \] donde \( C \) es la constante de integración.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the integral \( \int \frac{\sqrt{x}}{7x^5} \, dx \), we first simplify the integrand: \[ \frac{\sqrt{x}}{7x^5} = \frac{x^{1/2}}{7x^5} = \frac{1}{7} x^{1/2 - 5} = \frac{1}{7} x^{-9/2} \] Now we can rewrite the integral: \[ \int \frac{\sqrt{x}}{7x^5} \, dx = \frac{1}{7} \int x^{-9/2} \, dx \] Using the power rule for integration, we get: \[ \int x^{-9/2} \, dx = \frac{x^{-7/2}}{-7/2} + C = -\frac{2}{7} x^{-7/2} + C \] Substituting this back into the integral gives: \[ \int \frac{\sqrt{x}}{7x^5} \, dx = -\frac{2}{7} \cdot \frac{1}{7} x^{-7/2} + C = -\frac{2}{49} x^{-7/2} + C \] Thus, the final answer is: \[ -\frac{2}{49} x^{-7/2} + C \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy