Question
upstudy study bank question image url

12) \( \int_{0}^{\frac{\pi}{2}} \tan \left(\frac{x}{2}\right) d x \)

Ask by Mejia Stanley. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral evaluates to \( \ln 2 \).

Solution

To evaluate the integral: \[ \int_{0}^{\frac{\pi}{2}} \tan\left(\frac{x}{2}\right) \, dx \] we can use a substitution method. **Step 1: Substitute** Let: \[ u = \frac{x}{2} \quad \Rightarrow \quad du = \frac{dx}{2} \quad \Rightarrow \quad dx = 2\,du \] The integral becomes: \[ \int_{0}^{\frac{\pi}{2}} \tan\left(u\right) \cdot 2\,du = 2 \int_{0}^{\frac{\pi}{4}} \tan(u) \, du \] **Step 2: Integrate** Recall that: \[ \int \tan(u) \, du = -\ln|\cos(u)| + C \] So, \[ 2 \int_{0}^{\frac{\pi}{4}} \tan(u) \, du = 2 \left[ -\ln|\cos(u)| \right]_{0}^{\frac{\pi}{4}} = -2 \left[ \ln\left(\cos\left(\frac{\pi}{4}\right)\right) - \ln(\cos(0)) \right] \] **Step 3: Evaluate the Limits** We know that: \[ \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \quad \text{and} \quad \cos(0) = 1 \] Thus, \[ -2 \left[ \ln\left(\frac{\sqrt{2}}{2}\right) - \ln(1) \right] = -2 \ln\left(\frac{1}{\sqrt{2}}\right) = 2 \ln\left(\sqrt{2}\right) = \ln(2) \] **Final Answer:** \[ \boxed{\ln 2} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the integral \( \int_{0}^{\frac{\pi}{2}} \tan \left(\frac{x}{2}\right) d x \), we can use the substitution \( u = \frac{x}{2} \), which implies \( d x = 2 du \). The limits of integration change as follows: when \( x = 0 \), \( u = 0 \); and when \( x = \frac{\pi}{2} \), \( u = \frac{\pi}{4} \). Rewriting the integral, we have: \[ \int_{0}^{\frac{\pi}{2}} \tan \left(\frac{x}{2}\right) d x = 2 \int_{0}^{\frac{\pi}{4}} \tan(u) du. \] Next, we need to evaluate \( \int \tan(u) du \). The integral of \(\tan(u)\) is given by: \[ \int \tan(u) du = -\ln|\cos(u)| + C. \] Thus, \[ \int_{0}^{\frac{\pi}{4}} \tan(u) du = \left[-\ln|\cos(u)|\right]_{0}^{\frac{\pi}{4}}. \] Evaluating this expression at the bounds, we find: \[ -\ln|\cos(\frac{\pi}{4})| - (-\ln|\cos(0)|) = -\ln\left(\frac{1}{\sqrt{2}}\right) - (-\ln(1)) = -\ln\left(\frac{1}{\sqrt{2}}\right) = \ln(\sqrt{2}). \] Therefore, \[ \int_{0}^{\frac{\pi}{4}} \tan(u) du = \ln(\sqrt{2}). \] Now, substituting back into our expression gives us: \[ 2 \int_{0}^{\frac{\pi}{4}} \tan(u) du = 2 \ln(\sqrt{2}) = \ln(2). \] In conclusion, the value of the original integral is: \[ \int_{0}^{\frac{\pi}{2}} \tan \left(\frac{x}{2}\right) d x = \ln(2). \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy