Question
upstudy study bank question image url

4. \( f(x)=\int \sqrt{\left(6 x^{2}+10 x-2\right)}(12 x+10) d x \)

Ask by Barker Coleman. in Puerto Rico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La integral se resuelve reemplazando \( u = 6x^{2} + 10x - 2 \), lo que simplifica la integral a \( \frac{2}{3} (6x^{2} + 10x - 2)^{3/2} + C \).

Solution

Para resolver la integral \[ f(x) = \int \sqrt{6x^{2} + 10x - 2} \cdot (12x + 10) \, dx, \] seguimos los siguientes pasos: 1. **Sustitución:** Definimos una nueva variable \( u \) tal que: \[ u = 6x^{2} + 10x - 2. \] 2. **Cálculo de la derivada de \( u \):** \[ \frac{du}{dx} = 12x + 10 \quad \Rightarrow \quad du = (12x + 10) \, dx. \] Observamos que \( (12x + 10) \, dx \) es exactamente el factor que multiplica al radical en la integral original, lo que simplifica la integral considerablemente. 3. **Reescritura de la integral en términos de \( u \):** \[ f(x) = \int \sqrt{u} \, du. \] 4. **Integración:** Sabemos que: \[ \int \sqrt{u} \, du = \int u^{1/2} \, du = \frac{2}{3} u^{3/2} + C, \] donde \( C \) es la constante de integración. 5. **Sustitución inversa:** Reemplazamos \( u \) por su expresión original en términos de \( x \): \[ f(x) = \frac{2}{3} (6x^{2} + 10x - 2)^{3/2} + C. \] **Respuesta Final:** \[ f(x) = \frac{2}{3} \left(6x^{2} + 10x - 2\right)^{\frac{3}{2}} + C, \] donde \( C \) es la constante de integración.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

This integral combines polynomial expressions within a square root and is essentially linked to techniques in calculus such as substitution or integration by parts. Understanding the properties of integrals can help simplify the problem significantly. In this case, you might consider a substitution where you let \( u = 6x^2 + 10x - 2 \), allowing you to transform the integral into a more manageable form. Now, let’s talk about the importance of checking the behavior of your integrand. When evaluating integrals involving square roots, it’s vital to ensure that the expression under the square root remains non-negative over the interval of integration. Always sketch the function or analyze its critical points to determine where possible issues might arise. This proactive approach can save you from potential pitfalls and ensure your calculations lead to an accurate result!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy