Find the equivalent fraction. \( \begin{array}{lll}\text { 15. } \frac{4}{6}=\frac{\square}{3} & \text { 16. } \frac{25}{100}=\frac{5}{\square} & \text { 17. } \frac{14}{8}=\frac{\square}{4}\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find the equivalent fractions, let's solve each equation step by step. 1. For \( \frac{4}{6} = \frac{\square}{3} \): You can set up a proportion: \( 4 \times 3 = 6 \times \square \). This gives \( 12 = 6 \times \square \). Dividing both sides by 6, you find \( \square = 2 \). So, \( \frac{4}{6} = \frac{2}{3} \). 2. For \( \frac{25}{100} = \frac{5}{\square} \): Again, set up the proportion: \( 25 \times \square = 100 \times 5 \). This simplifies to \( 25 \times \square = 500 \). Dividing by 25 yields \( \square = 20 \). Thus, \( \frac{25}{100} = \frac{5}{20} \). 3. For \( \frac{14}{8} = \frac{\square}{4} \): Set up the proportion: \( 14 \times 4 = 8 \times \square \). This leads to \( 56 = 8 \times \square \). Dividing both sides by 8 gives \( \square = 7 \). Hence, \( \frac{14}{8} = \frac{7}{4} \). Putting it all together, we have: - \( \frac{4}{6} = \frac{2}{3} \) - \( \frac{25}{100} = \frac{5}{20} \) - \( \frac{14}{8} = \frac{7}{4} \)