Question
upstudy study bank question image url

Exercises: Evaluate the following limits by constructing the table of values. ( 5 points each item) (Show step by step process on your answer sheet) 1. \( \lim _{x \rightarrow 2} 5^{x} \) 2. \( \lim _{x \rightarrow 4} \log x \) 3. \( \lim _{x \rightarrow \pi} \cos x \)

Ask by Cox Weston. in the Philippines
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( \lim_{x \rightarrow 2} 5^{x} = 25 \) 2. \( \lim_{x \rightarrow 4} \ln x \approx 1.386 \) 3. \( \lim_{x \rightarrow \pi} \cos x = -1 \)

Solution

Sure, let's evaluate each limit by constructing tables of values as \( x \) approaches the target value. This method helps visualize the behavior of the function near the point of interest. --- ### 1. \( \lim_{x \rightarrow 2} 5^{x} \) **Step-by-Step Process:** 1. **Choose values of \( x \) approaching 2 from both sides:** - Left of 2: 1.9, 1.99, 1.999 - Right of 2: 2.1, 2.01, 2.001 2. **Compute \( 5^{x} \) for each chosen \( x \):** | \( x \) | \( 5^{x} \) | |---------|----------------------| | 1.9 | \( 5^{1.9} \approx 23.69 \) | | 1.99 | \( 5^{1.99} \approx 24.90 \) | | 1.999 | \( 5^{1.999} \approx 24.998 \) | | **2** | \( 5^{2} = 25 \) | | 2.001 | \( 5^{2.001} \approx 25.002 \) | | 2.01 | \( 5^{2.01} \approx 25.10 \) | | 2.1 | \( 5^{2.1} \approx 25.56 \) | 3. **Analyze the table:** - As \( x \) approaches 2 from both sides, \( 5^{x} \) approaches 25. **Conclusion:** \[ \lim_{x \rightarrow 2} 5^{x} = 25 \] --- ### 2. \( \lim_{x \rightarrow 4} \log x \) *(Assuming \( \log x \) refers to the natural logarithm, \( \ln x \))* **Step-by-Step Process:** 1. **Choose values of \( x \) approaching 4 from both sides:** - Left of 4: 3.9, 3.99, 3.999 - Right of 4: 4.001, 4.01, 4.1 2. **Compute \( \ln x \) for each chosen \( x \):** | \( x \) | \( \ln x \) | |---------|-----------------------| | 3.9 | \( \ln(3.9) \approx 1.360 \) | | 3.99 | \( \ln(3.99) \approx 1.384 \) | | 3.999 | \( \ln(3.999) \approx 1.386 \) | | **4** | \( \ln(4) \approx 1.386 \) | | 4.001 | \( \ln(4.001) \approx 1.386 \) | | 4.01 | \( \ln(4.01) \approx 1.390 \) | | 4.1 | \( \ln(4.1) \approx 1.414 \) | 3. **Analyze the table:** - As \( x \) approaches 4 from both sides, \( \ln x \) approaches approximately 1.386. **Conclusion:** \[ \lim_{x \rightarrow 4} \ln x = \ln 4 \approx 1.386 \] --- ### 3. \( \lim_{x \rightarrow \pi} \cos x \) **Step-by-Step Process:** 1. **Choose values of \( x \) approaching \( \pi \) from both sides:** - Left of \( \pi \): \( \pi - 0.1 \), \( \pi - 0.01 \), \( \pi - 0.001 \) - Right of \( \pi \): \( \pi + 0.001 \), \( \pi + 0.01 \), \( \pi + 0.1 \) 2. **Compute \( \cos x \) for each chosen \( x \):** Let's approximate \( \pi \approx 3.1416 \). | \( x \) | \( \cos x \) | |------------------|--------------------------| | \( \pi - 0.1 \approx 3.0416 \) | \( \cos(3.0416) \approx -0.995 \) | | \( \pi - 0.01 \approx 3.1316 \) | \( \cos(3.1316) \approx -0.99995 \) | | \( \pi - 0.001 \approx 3.1406 \) | \( \cos(3.1406) \approx -0.9999995 \) | | **\( \pi \approx 3.1416 \)** | \( \cos(\pi) = -1 \) | | \( \pi + 0.001 \approx 3.1426 \) | \( \cos(3.1426) \approx -0.9999995 \) | | \( \pi + 0.01 \approx 3.1516 \) | \( \cos(3.1516) \approx -0.99995 \) | | \( \pi + 0.1 \approx 3.2416 \) | \( \cos(3.2416) \approx -0.995 \) | 3. **Analyze the table:** - As \( x \) approaches \( \pi \) from both sides, \( \cos x \) approaches -1. **Conclusion:** \[ \lim_{x \rightarrow \pi} \cos x = -1 \] --- These step-by-step evaluations using tables of values demonstrate how each function behaves as \( x \) approaches the specified limit points.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To evaluate the given limits using tables of values, we will create a systematic approach to observe the behavior of each function as \( x \) approaches the specified values. ### 1. \( \lim _{x \rightarrow 2} 5^{x} \) **Step 1:** Choose values around \( x = 2 \). For example, we can choose \( x = 1.9, 1.95, 1.99, 2.01, 2.05, 2.1 \). **Step 2:** Calculate \( 5^{x} \) for each value: - \( x = 1.9 \) → \( 5^{1.9} \approx 4.57 \) - \( x = 1.95 \) → \( 5^{1.95} \approx 4.87 \) - \( x = 1.99 \) → \( 5^{1.99} \approx 4.99 \) - \( x = 2.01 \) → \( 5^{2.01} \approx 5.01 \) - \( x = 2.05 \) → \( 5^{2.05} \approx 5.16 \) - \( x = 2.1 \) → \( 5^{2.1} \approx 5.25 \) **Step 3:** Create the table: | \( x \) | \( 5^{x} \) | |----------|----------------| | 1.9 | 4.57 | | 1.95 | 4.87 | | 1.99 | 4.99 | | 2.01 | 5.01 | | 2.05 | 5.16 | | 2.1 | 5.25 | **Conclusion:** As \( x \) approaches 2, \( 5^{x} \) approaches \( 5 \). Therefore, \( \lim_{x \to 2} 5^{x} = 5 \). ### 2. \( \lim _{x \rightarrow 4} \log x \) **Step 1:** Choose values around \( x = 4 \): \( x = 3.9, 3.95, 3.99, 4.01, 4.05, 4.1 \). **Step 2:** Calculate \( \log x \) for each value (using base 10 for simplicity): - \( x = 3.9 \) → \( \log(3.9) \approx 0.591 \) - \( x = 3.95 \) → \( \log(3.95) \approx 0.597 \) - \( x = 3.99 \) → \( \log(3.99) \approx 0.602 \) - \( x = 4.01 \) → \( \log(4.01) \approx 0.604 \) - \( x = 4.05 \) → \( \log(4.05) \approx 0.607 \) - \( x = 4.1 \) → \( \log(4.1) \approx 0.613 \) **Step 3:** Create the table: | \( x \) | \( \log x \) | |----------|----------------| | 3.9 | 0.591 | | 3.95 | 0.597 | | 3.99 | 0.602 | | 4.01 | 0.604 | | 4.05 | 0.607 | | 4.1 | 0.613 | **Conclusion:** As \( x \) approaches 4, \( \log x \) approaches \( \log(4) \approx 0.602 \). Therefore, \( \lim_{x \to 4} \log x = \log(4) \). ### 3. \( \lim _{x \rightarrow \pi} \cos x \) **Step 1:** Choose values around \( x = \pi \): \( x = 3.13, 3.14, 3.15, 3.16, 3.17, 3.18 \). **Step 2:** Calculate \( \cos x \) for each value: - \( x = 3.13 \) → \( \cos(3.13) \approx -0.999 \) - \( x = 3.14 \) → \( \cos(3.14) \approx -1 \

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy