Use the information given about the angle \( \theta, \cot \theta=-4, \sec \theta<0,0 \leq \theta<2 \pi \), to find the exact values \( 5 f \) the following. (a) \( \sin (2 \theta) \), (b) \( \cos (2 \theta) \), (c) \( \sin \frac{\theta}{2} \), and (d) \( \cos \frac{\theta}{2} \) (a) \( \sin (2 \theta)=\square \) (Type an exact answer, using radicals as needed.)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To solve this problem, we first need to determine the relevant trigonometric ratios based on the given values of \( \cot \theta \) and \( \sec \theta \). Since \( \cot \theta = -4 \), we have: \[ \tan \theta = -\frac{1}{4} \] This indicates that \( \theta \) is in the second quadrant (since \( \sec \theta < 0 \)). Let’s use the identity \( \cot \theta = \frac{\cos \theta}{\sin \theta} \): 1. We can set \( \cos \theta = -4k \) and \( \sin \theta = k \) for some \( k \). 2. Thus, \( \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{k}{-4k} = -\frac{1}{4} \). Next, we apply the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting in our expressions: \[ k^2 + (-4k)^2 = 1 \Rightarrow k^2 + 16k^2 = 1 \Rightarrow 17k^2 = 1 \Rightarrow k^2 = \frac{1}{17} \Rightarrow k = \frac{1}{\sqrt{17}} \] Hence, we compute: - \( \sin \theta = k = \frac{1}{\sqrt{17}} \) - \( \cos \theta = -4k = -\frac{4}{\sqrt{17}} \) Now, we calculate the values required: **Step 1: Find \(\sin(2\theta)\)**: Using the double angle formula: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] Substituting the values: \[ \sin(2\theta) = 2 \cdot \frac{1}{\sqrt{17}} \cdot \left(-\frac{4}{\sqrt{17}}\right) = 2 \cdot \frac{-4}{17} = -\frac{8}{17} \] **The exact value is:** (a) \( \sin(2\theta) = -\frac{8}{17} \)