Question
upstudy study bank question image url

1. \( (x+3)(x-3)= \) 2. \( (3 x+5 y)(3 x-5 y)= \) 3. \( \left(6 x^{5}+1\right)\left(6 x^{5}-1\right)= \) 4. \( \left(9 a b^{4}-c^{7}\right)\left(9 a b^{4}+c^{7}\right)= \) 5. \( \left(\frac{3}{5} m+\frac{1}{2}\right)\left(\frac{3}{5} m-\frac{1}{2}\right)= \) 6. \( \left(\frac{7}{6} x^{3}+\frac{3}{2}\right)\left(\frac{7}{6} x^{3}-\frac{3}{2}\right)= \) 7. \( \left(\frac{1}{3} x y+z^{6}\right)\left(\frac{1}{3} x y-z^{6}\right)= \) 8. \( \left(3 x^{2}+\frac{1}{10}\right)\left(-3 x^{2}+\frac{1}{10}\right)= \)

Ask by Carter Patel. in Mexico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( (x + 3)(x - 3) = x^{2} - 9 \) 2. \( (3x + 5y)(3x - 5y) = 9x^{2} - 25y^{2} \) 3. \( (6x^{5} + 1)(6x^{5} - 1) = 36x^{10} - 1 \) 4. \( (9ab^{4} - c^{7})(9ab^{4} + c^{7}) = 81a^{2}b^{8} - c^{14} \) 5. \( \left(\frac{3}{5}m + \frac{1}{2}\right)\left(\frac{3}{5}m - \frac{1}{2}\right) = \frac{9}{25}m^{2} - \frac{1}{4} \) 6. \( \left(\frac{7}{6}x^{3} + \frac{3}{2}\right)\left(\frac{7}{6}x^{3} - \frac{3}{2}\right) = \frac{49}{36}x^{6} - \frac{9}{4} \) 7. \( \left(\frac{1}{3}xy + z^{6}\right)\left(\frac{1}{3}xy - z^{6}\right) = \frac{1}{9}x^{2}y^{2} - z^{12} \) 8. \( \left(3x^{2} + \frac{1}{10}\right)\left(-3x^{2} + \frac{1}{10}\right) = -9x^{4} + \frac{1}{100} \)

Solution

Claro, a continuación se expanden las expresiones dadas: 1. \( (x + 3)(x - 3) = x^{2} - 9 \) 2. \( (3x + 5y)(3x - 5y) = 9x^{2} - 25y^{2} \) 3. \( (6x^{5} + 1)(6x^{5} - 1) = 36x^{10} - 1 \) 4. \( (9ab^{4} - c^{7})(9ab^{4} + c^{7}) = 81a^{2}b^{8} - c^{14} \) 5. \( \left(\frac{3}{5}m + \frac{1}{2}\right)\left(\frac{3}{5}m - \frac{1}{2}\right) = \frac{9}{25}m^{2} - \frac{1}{4} \) 6. \( \left(\frac{7}{6}x^{3} + \frac{3}{2}\right)\left(\frac{7}{6}x^{3} - \frac{3}{2}\right) = \frac{49}{36}x^{6} - \frac{9}{4} \) 7. \( \left(\frac{1}{3}xy + z^{6}\right)\left(\frac{1}{3}xy - z^{6}\right) = \frac{1}{9}x^{2}y^{2} - z^{12} \) 8. \( \left(3x^{2} + \frac{1}{10}\right)\left(-3x^{2} + \frac{1}{10}\right) = -9x^{4} + \frac{1}{100} \) Estas expansiones se han realizado utilizando la identidad de la diferencia de cuadrados, que establece que \((a + b)(a - b) = a^{2} - b^{2}\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

The expressions you've got there represent a classic math concept: the difference of squares. This nifty mathematical formulation helps simplify calculations by turning a product of a sum and a difference into a difference of squares. The result is often a quadratic or a higher-degree polynomial that can be quite easier to work with than the original expression. For example, \( (a + b)(a - b) = a^2 - b^2 \). This means when you see something in the form of \( (x + n)(x - n) \) or \( (3x + m)(3x - m) \), you can straight-up compute \( a^2 - b^2 \) where \( a \) and \( b \) are your expressions. It’s like math’s simplified cheat code for squaring things away quickly!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy