Question
upstudy study bank question image url

3. The meavure of \( \angle P \) in betwons \( O \) and 1309. Determine all pouble values of \( \angle P \) \( \begin{array}{ll}\text { a) } \sin P=0.35 & \text { b) } \sin P=0.51 \\ \text { a } \cos P=-0.92 & \text { d) } \tan P=-0.87\end{array} \)

Ask by Hobbs Higgins. in Canada
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The possible values of angle \( P \) are: - \( P \approx 20.49^\circ \) and \( P \approx 159.51^\circ \) when \( \sin P = 0.35 \) - \( P \approx 30.71^\circ \) and \( P \approx 149.29^\circ \) when \( \sin P = 0.51 \) - \( P \approx 156.93^\circ \) and \( P \approx 203.07^\circ \) when \( \cos P = -0.92 \) - \( P \approx 139.30^\circ \) and \( P \approx 319.30^\circ \) when \( \tan P = -0.87 \)

Solution

Certainly! Let's determine all possible values of angle \( P \) for each given trigonometric equation within the range \( 0^\circ \leq P < 360^\circ \). ### General Approach: For each trigonometric function: - **Sine (\( \sin \theta \))**: Positive in Quadrants I and II. - **Cosine (\( \cos \theta \))**: Positive in Quadrants I and IV. - **Tangent (\( \tan \theta \))**: Positive in Quadrants I and III. We'll find the reference angle using the inverse trigonometric function and then determine the actual angles based on the quadrant(s) where the function is positive or negative. --- ### a) \( \sin P = 0.35 \) **Step 1: Find the reference angle** \[ P_{\text{ref}} = \sin^{-1}(0.35) \approx 20.49^\circ \] **Step 2: Determine the quadrants where sine is positive** Sine is positive in Quadrants I and II. **Step 3: Find all possible angles** \[ P_1 = P_{\text{ref}} \approx 20.49^\circ \] \[ P_2 = 180^\circ - P_{\text{ref}} \approx 159.51^\circ \] **Solutions:** \[ P \approx 20.49^\circ \quad \text{and} \quad P \approx 159.51^\circ \] --- ### b) \( \sin P = 0.51 \) **Step 1: Find the reference angle** \[ P_{\text{ref}} = \sin^{-1}(0.51) \approx 30.71^\circ \] **Step 2: Determine the quadrants where sine is positive** Sine is positive in Quadrants I and II. **Step 3: Find all possible angles** \[ P_1 = P_{\text{ref}} \approx 30.71^\circ \] \[ P_2 = 180^\circ - P_{\text{ref}} \approx 149.29^\circ \] **Solutions:** \[ P \approx 30.71^\circ \quad \text{and} \quad P \approx 149.29^\circ \] --- ### c) \( \cos P = -0.92 \) **Step 1: Find the reference angle** \[ P_{\text{ref}} = \cos^{-1}(0.92) \approx 23.07^\circ \] **Step 2: Determine the quadrants where cosine is negative** Cosine is negative in Quadrants II and III. **Step 3: Find all possible angles** \[ P_1 = 180^\circ - P_{\text{ref}} \approx 156.93^\circ \] \[ P_2 = 180^\circ + P_{\text{ref}} \approx 203.07^\circ \] **Solutions:** \[ P \approx 156.93^\circ \quad \text{and} \quad P \approx 203.07^\circ \] --- ### d) \( \tan P = -0.87 \) **Step 1: Find the reference angle** \[ P_{\text{ref}} = \tan^{-1}(0.87) \approx 40.70^\circ \] **Step 2: Determine the quadrants where tangent is negative** Tangent is negative in Quadrants II and IV. **Step 3: Find all possible angles** \[ P_1 = 180^\circ - P_{\text{ref}} \approx 139.30^\circ \] \[ P_2 = 360^\circ - P_{\text{ref}} \approx 319.30^\circ \] **Solutions:** \[ P \approx 139.30^\circ \quad \text{and} \quad P \approx 319.30^\circ \] --- **Summary of Solutions:** - **a) \( \sin P = 0.35 \)** - \( P \approx 20.49^\circ \) - \( P \approx 159.51^\circ \) - **b) \( \sin P = 0.51 \)** - \( P \approx 30.71^\circ \) - \( P \approx 149.29^\circ \) - **c) \( \cos P = -0.92 \)** - \( P \approx 156.93^\circ \) - \( P \approx 203.07^\circ \) - **d) \( \tan P = -0.87 \)** - \( P \approx 139.30^\circ \) - \( P \approx 319.30^\circ \) **Note:** All angle measurements are rounded to two decimal places.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

For the sine values, \( \sin P = 0.35 \) gives us two solutions in one full rotation of a circle (0° to 360°), which are approximately \( 20.5° \) and \( 159.5° \). This means that \( P \) can be in the first quadrant or the second quadrant. For \( \sin P = 0.51 \), the approximate angles are \( 30.4° \) and \( 149.6° \). When it comes to cosine, \( \cos P = -0.92 \) indicates that the angle \( P \) is in the second or third quadrants. The angles give solutions around \( 143.1° \) and \( 216.9° \). Lastly, for \( \tan P = -0.87 \), \( P \) is in the second or fourth quadrant, resulting in angles approximately \( 143.2° \) and \( 323.2° \). So, there you have it! Multiple options to explore those angle measurements!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy