Answer
The possible values of angle \( P \) are:
- \( P \approx 20.49^\circ \) and \( P \approx 159.51^\circ \) when \( \sin P = 0.35 \)
- \( P \approx 30.71^\circ \) and \( P \approx 149.29^\circ \) when \( \sin P = 0.51 \)
- \( P \approx 156.93^\circ \) and \( P \approx 203.07^\circ \) when \( \cos P = -0.92 \)
- \( P \approx 139.30^\circ \) and \( P \approx 319.30^\circ \) when \( \tan P = -0.87 \)
Solution
Certainly! Let's determine all possible values of angle \( P \) for each given trigonometric equation within the range \( 0^\circ \leq P < 360^\circ \).
### General Approach:
For each trigonometric function:
- **Sine (\( \sin \theta \))**: Positive in Quadrants I and II.
- **Cosine (\( \cos \theta \))**: Positive in Quadrants I and IV.
- **Tangent (\( \tan \theta \))**: Positive in Quadrants I and III.
We'll find the reference angle using the inverse trigonometric function and then determine the actual angles based on the quadrant(s) where the function is positive or negative.
---
### a) \( \sin P = 0.35 \)
**Step 1: Find the reference angle**
\[
P_{\text{ref}} = \sin^{-1}(0.35) \approx 20.49^\circ
\]
**Step 2: Determine the quadrants where sine is positive**
Sine is positive in Quadrants I and II.
**Step 3: Find all possible angles**
\[
P_1 = P_{\text{ref}} \approx 20.49^\circ
\]
\[
P_2 = 180^\circ - P_{\text{ref}} \approx 159.51^\circ
\]
**Solutions:**
\[
P \approx 20.49^\circ \quad \text{and} \quad P \approx 159.51^\circ
\]
---
### b) \( \sin P = 0.51 \)
**Step 1: Find the reference angle**
\[
P_{\text{ref}} = \sin^{-1}(0.51) \approx 30.71^\circ
\]
**Step 2: Determine the quadrants where sine is positive**
Sine is positive in Quadrants I and II.
**Step 3: Find all possible angles**
\[
P_1 = P_{\text{ref}} \approx 30.71^\circ
\]
\[
P_2 = 180^\circ - P_{\text{ref}} \approx 149.29^\circ
\]
**Solutions:**
\[
P \approx 30.71^\circ \quad \text{and} \quad P \approx 149.29^\circ
\]
---
### c) \( \cos P = -0.92 \)
**Step 1: Find the reference angle**
\[
P_{\text{ref}} = \cos^{-1}(0.92) \approx 23.07^\circ
\]
**Step 2: Determine the quadrants where cosine is negative**
Cosine is negative in Quadrants II and III.
**Step 3: Find all possible angles**
\[
P_1 = 180^\circ - P_{\text{ref}} \approx 156.93^\circ
\]
\[
P_2 = 180^\circ + P_{\text{ref}} \approx 203.07^\circ
\]
**Solutions:**
\[
P \approx 156.93^\circ \quad \text{and} \quad P \approx 203.07^\circ
\]
---
### d) \( \tan P = -0.87 \)
**Step 1: Find the reference angle**
\[
P_{\text{ref}} = \tan^{-1}(0.87) \approx 40.70^\circ
\]
**Step 2: Determine the quadrants where tangent is negative**
Tangent is negative in Quadrants II and IV.
**Step 3: Find all possible angles**
\[
P_1 = 180^\circ - P_{\text{ref}} \approx 139.30^\circ
\]
\[
P_2 = 360^\circ - P_{\text{ref}} \approx 319.30^\circ
\]
**Solutions:**
\[
P \approx 139.30^\circ \quad \text{and} \quad P \approx 319.30^\circ
\]
---
**Summary of Solutions:**
- **a) \( \sin P = 0.35 \)**
- \( P \approx 20.49^\circ \)
- \( P \approx 159.51^\circ \)
- **b) \( \sin P = 0.51 \)**
- \( P \approx 30.71^\circ \)
- \( P \approx 149.29^\circ \)
- **c) \( \cos P = -0.92 \)**
- \( P \approx 156.93^\circ \)
- \( P \approx 203.07^\circ \)
- **d) \( \tan P = -0.87 \)**
- \( P \approx 139.30^\circ \)
- \( P \approx 319.30^\circ \)
**Note:** All angle measurements are rounded to two decimal places.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution