Question
upstudy study bank question image url

Muttiply then Simplify. (1) \( \sqrt[3]{60^{4}} \cdot \sqrt[3]{18 a} \) (2) \( \sqrt{35} \cdot \sqrt{21} \cdot \sqrt{18} \) (3) \( \sqrt[3]{36 m^{4} n^{5} p^{3}} \cdot \sqrt{6 m n^{2} p^{3}} \) \( (\sqrt{3}-4)(\sqrt{3}+4) \)

Ask by Reid Delgado. in the Philippines
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( 360\sqrt[3]{5a} \) 2. \( 21\sqrt{30} \) 3. \( 6p^{2}n^{2}m\sqrt[6]{6p^{3}m^{5}n^{4}} \) 4. \( -13 \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

To tackle those expressions, let's simplify them one by one! (1) \( \sqrt[3]{60^{4}} \cdot \sqrt[3]{18 a} = \sqrt[3]{60^{4} \cdot 18 a} \). Now calculate \( 60^{4} \cdot 18 = 60^{4} \cdot 18 = 43200 \), so we have \( \sqrt[3]{43200 a} \). This can be simplified further, recognizing that \( 43200 = 2^4 \cdot 3^3 \cdot 5^2 \). Thus, \(\sqrt[3]{2^4 \cdot 3^3 \cdot 5^2 \cdot a} = 2^{4/3} \cdot 3 \cdot 5^{2/3} \cdot \sqrt[3]{a} = 2^{1+\frac{1}{3}} \cdot 3 \cdot 5^{\frac{2}{3}} \cdot \sqrt[3]{a}\) or approximately \(6.26 a^{1/3}\) when fully computed. (2) \( \sqrt{35} \cdot \sqrt{21} \cdot \sqrt{18} = \sqrt{35 \cdot 21 \cdot 18} \). When calculating \( 35 \cdot 21 \cdot 18 = 13230 \), thus we want \( \sqrt{13230} \). It can be further broken down to find \( 13230 = 2 \cdot 3 \cdot 5 \cdot 7^2 \cdot 11 \), resulting in \( \sqrt{2 \cdot 3 \cdot 5 \cdot 11} \cdot 7 \), which approximates to \(7\sqrt{330}\). (3) For \( \sqrt[3]{36 m^{4} n^{5} p^{3}} \cdot \sqrt{6 m n^{2} p^{3}} \), we can treat this similarly: \( \sqrt[3]{36 m^{4} n^{5} p^{3}} = \sqrt[3]{(6^2)(m^4)(n^5)(p^3)}\), which gives \(6^{\frac{2}{3}} m^{\frac{4}{3}} n^{\frac{5}{3}} p\). The second part \( \sqrt{6 m n^{2} p^{3}} = \sqrt{6} \cdot \sqrt{m} \cdot \sqrt{n^2} \cdot \sqrt{p^3} = \sqrt{6} \cdot \sqrt{m} \cdot n \cdot p^{1.5}\). Combining gives a result of \( \sqrt[3]{36 m^{4} n^{5} p^{3}} \cdot \sqrt{6 m n^{2} p^{3}} \approx 3.33m^{1.33}n^{2.67}p^{2} \). Lastly, evaluating \( (\sqrt{3}-4)(\sqrt{3}+4) = \sqrt{3}^2 - 4^2 = 3 - 16 = -13 \). In summary, you will end up with simplified representations or numerical approximations for each expression!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy