Muttiply then Simplify. (1) \( \sqrt[3]{60^{4}} \cdot \sqrt[3]{18 a} \) (2) \( \sqrt{35} \cdot \sqrt{21} \cdot \sqrt{18} \) (3) \( \sqrt[3]{36 m^{4} n^{5} p^{3}} \cdot \sqrt{6 m n^{2} p^{3}} \) \( (\sqrt{3}-4)(\sqrt{3}+4) \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To tackle those expressions, let's simplify them one by one! (1) \( \sqrt[3]{60^{4}} \cdot \sqrt[3]{18 a} = \sqrt[3]{60^{4} \cdot 18 a} \). Now calculate \( 60^{4} \cdot 18 = 60^{4} \cdot 18 = 43200 \), so we have \( \sqrt[3]{43200 a} \). This can be simplified further, recognizing that \( 43200 = 2^4 \cdot 3^3 \cdot 5^2 \). Thus, \(\sqrt[3]{2^4 \cdot 3^3 \cdot 5^2 \cdot a} = 2^{4/3} \cdot 3 \cdot 5^{2/3} \cdot \sqrt[3]{a} = 2^{1+\frac{1}{3}} \cdot 3 \cdot 5^{\frac{2}{3}} \cdot \sqrt[3]{a}\) or approximately \(6.26 a^{1/3}\) when fully computed. (2) \( \sqrt{35} \cdot \sqrt{21} \cdot \sqrt{18} = \sqrt{35 \cdot 21 \cdot 18} \). When calculating \( 35 \cdot 21 \cdot 18 = 13230 \), thus we want \( \sqrt{13230} \). It can be further broken down to find \( 13230 = 2 \cdot 3 \cdot 5 \cdot 7^2 \cdot 11 \), resulting in \( \sqrt{2 \cdot 3 \cdot 5 \cdot 11} \cdot 7 \), which approximates to \(7\sqrt{330}\). (3) For \( \sqrt[3]{36 m^{4} n^{5} p^{3}} \cdot \sqrt{6 m n^{2} p^{3}} \), we can treat this similarly: \( \sqrt[3]{36 m^{4} n^{5} p^{3}} = \sqrt[3]{(6^2)(m^4)(n^5)(p^3)}\), which gives \(6^{\frac{2}{3}} m^{\frac{4}{3}} n^{\frac{5}{3}} p\). The second part \( \sqrt{6 m n^{2} p^{3}} = \sqrt{6} \cdot \sqrt{m} \cdot \sqrt{n^2} \cdot \sqrt{p^3} = \sqrt{6} \cdot \sqrt{m} \cdot n \cdot p^{1.5}\). Combining gives a result of \( \sqrt[3]{36 m^{4} n^{5} p^{3}} \cdot \sqrt{6 m n^{2} p^{3}} \approx 3.33m^{1.33}n^{2.67}p^{2} \). Lastly, evaluating \( (\sqrt{3}-4)(\sqrt{3}+4) = \sqrt{3}^2 - 4^2 = 3 - 16 = -13 \). In summary, you will end up with simplified representations or numerical approximations for each expression!