Question

8. \( f(x)=2 x^{3}-4 x^{2}+2 x \); considere que \( F(0)=15 \)

Ask by Pena Gough. in Mexico
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The function \( F(x) \) is \( \frac{1}{2}x^4 - \frac{4}{3}x^3 + x^2 + 15 \).

Solution

Para encontrar la función \( F(x) \) que es una antiderivada de \( f(x) = 2x^3 - 4x^2 + 2x \) y que satisface la condición \( F(0) = 15 \), seguimos estos pasos: ### Paso 1: Encontrar la antiderivada general \( F(x) \) Integrar cada término de \( f(x) \): \[ \int f(x) \, dx = \int \left(2x^3 - 4x^2 + 2x\right) dx \] \[ = 2 \int x^3 \, dx - 4 \int x^2 \, dx + 2 \int x \, dx \] \[ = 2 \left(\frac{x^4}{4}\right) - 4 \left(\frac{x^3}{3}\right) + 2 \left(\frac{x^2}{2}\right) + C \] \[ = \frac{1}{2}x^4 - \frac{4}{3}x^3 + x^2 + C \] ### Paso 2: Aplicar la condición inicial \( F(0) = 15 \) Sustituimos \( x = 0 \) en \( F(x) \): \[ F(0) = \frac{1}{2}(0)^4 - \frac{4}{3}(0)^3 + (0)^2 + C = 15 \] \[ 0 + 0 + 0 + C = 15 \implies C = 15 \] ### Paso 3: Escribir la función \( F(x) \) completa \[ F(x) = \frac{1}{2}x^4 - \frac{4}{3}x^3 + x^2 + 15 \] Por lo tanto, la función antiderivada que cumple con las condiciones dadas es: \[ F(x) = \frac{1}{2}x^4 - \frac{4}{3}x^3 + x^2 + 15 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Para encontrar \( F(x) \), la función primitiva o integral indefinida de \( f(x) \), empezamos integrando \( f(x) \). Esto da: \[ F(x) = \int (2x^3 - 4x^2 + 2x) \, dx = \frac{2}{4}x^4 - \frac{4}{3}x^3 + \frac{2}{2}x^2 + C = \frac{1}{2}x^4 - \frac{4}{3}x^3 + x^2 + C \] Usando que \( F(0) = 15 \) para encontrar el valor de \( C \): \[ F(0) = \frac{1}{2}(0)^4 - \frac{4}{3}(0)^3 + (0)^2 + C = C \] Por lo tanto, \( C = 15 \). Así, la función primitiva completa es: \[ F(x) = \frac{1}{2}x^4 - \frac{4}{3}x^3 + x^2 + 15 \] Ahora ya tienes la función primitiva que satisface la condición dada.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy