Find the exact value of each of the following under the given conditions below. \[ \tan \alpha=-\frac{12}{5}, \frac{\pi}{2}<\alpha<\pi ; \cos \beta=\frac{1}{2}, 0<\beta<\frac{\pi}{2} \] \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \) (a) \( \sin (\alpha+\beta)=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To solve for \(\sin(\alpha+\beta)\), \(\cos(\alpha+\beta)\), \(\sin(\alpha-\beta)\), and \(\tan(\alpha-\beta)\), we first need to determine the values of \(\sin \alpha\), \(\cos \alpha\), and \(\sin \beta\), \(\cos \beta\) based on the given conditions. ### Step 1: Determine \(\sin \alpha\) and \(\cos \alpha\) Since \(\tan \alpha = -\frac{12}{5}\) and \(\alpha\) is in the second quadrant (where sine is positive and cosine is negative), we can use the identity: \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \] Let \(\sin \alpha = 12k\) and \(\cos \alpha = -5k\) for some positive \(k\). Then we find \(k\) using the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] \[ (12k)^2 + (-5k)^2 = 1 \quad \Rightarrow \quad 144k^2 + 25k^2 = 1 \quad \Rightarrow \quad 169k^2 = 1 \quad \Rightarrow \quad k^2 = \frac{1}{169} \quad \Rightarrow \quad k = \frac{1}{13} \] Now we can find \(\sin \alpha\) and \(\cos \alpha\): \[ \sin \alpha = 12k = \frac{12}{13}, \quad \cos \alpha = -5k = -\frac{5}{13} \] ### Step 2: Determine \(\sin \beta\) and \(\cos \beta\) For \(\beta\), since \(\cos \beta = \frac{1}{2}\) and \(0 < \beta < \frac{\pi}{2}\), we can find \(\sin \beta\) using the Pythagorean identity: \[ \sin^2 \beta + \cos^2 \beta = 1 \] \[ \sin^2 \beta + \left(\frac{1}{2}\right)^2 = 1 \quad \Rightarrow \quad \sin^2 \beta + \frac{1}{4} = 1 \quad \Rightarrow \quad \sin^2 \beta = \frac{3}{4} \quad \Rightarrow \quad \sin \beta = \frac{\sqrt{3}}{2} \] ### Step 3: Calculate the required values Now we can calculate each part using the sine and cosine addition formulas: (a) \(\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta\): \[ \sin(\alpha + \beta) = \left(\frac{12}{13}\right)\left(\frac{1}{2}\right) + \left(-\frac{5}{13}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{12}{26} - \frac{5\sqrt{3}}{26} = \frac{12 - 5\sqrt{3}}{26} \] (b) \(\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta\): \[ \cos(\alpha + \beta) = \left(-\frac{5}{13}\right)\left(\frac{1}{2}\right) - \left(\frac{12}{13}\right)\left(\frac{\sqrt{3}}{2}\right) = -\frac{5}{26} - \frac{12\sqrt{3}}{26} = -\frac{5 + 12\sqrt{3}}{26} \] (c) \(\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta\): \[ \sin(\alpha - \beta) = \left(\frac{12}{13}\right)\left(\frac{1}{2}\right) - \left(-\frac{5}{13}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{12}{26} + \frac{5\sqrt{3}}{26} = \frac{12 + 5\sqrt{3}}{26} \] (d) \(\tan(\alpha - \beta) = \frac{\sin(\alpha - \