Question
upstudy study bank question image url

Find the exact value of each of the following under the given conditions below. \[ \tan \alpha=-\frac{12}{5}, \frac{\pi}{2}<\alpha<\pi ; \cos \beta=\frac{1}{2}, 0<\beta<\frac{\pi}{2} \] \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \) (a) \( \sin (\alpha+\beta)=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

Ask by Lowe Brooks. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \sin(\alpha + \beta) = \frac{12 - 5\sqrt{3}}{26} \]

Solution

To find \( \sin(\alpha + \beta) \), we'll use the sine addition formula: \[ \sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta \] Let's break down each component step by step. ### Given: - \( \tan \alpha = -\frac{12}{5} \) with \( \frac{\pi}{2} < \alpha < \pi \) - \( \cos \beta = \frac{1}{2} \) with \( 0 < \beta < \frac{\pi}{2} \) ### Step 1: Determine \( \sin\alpha \) and \( \cos\alpha \) Since \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{12}{5} \), we can consider a right triangle where: - Opposite side to angle \( \alpha \) is 12 - Adjacent side to angle \( \alpha \) is -5 (negative because \( \alpha \) is in the second quadrant) - Hypotenuse \( r = \sqrt{(-5)^2 + 12^2} = \sqrt{25 + 144} = 13 \) Thus: \[ \sin \alpha = \frac{12}{13}, \quad \cos \alpha = -\frac{5}{13} \] ### Step 2: Determine \( \sin\beta \) Given \( \cos \beta = \frac{1}{2} \) and \( \beta \) is in the first quadrant: \[ \sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2} \] ### Step 3: Apply the Sine Addition Formula \[ \sin(\alpha + \beta) = \left(\frac{12}{13}\right)\left(\frac{1}{2}\right) + \left(-\frac{5}{13}\right)\left(\frac{\sqrt{3}}{2}\right) \] \[ \sin(\alpha + \beta) = \frac{12}{26} - \frac{5\sqrt{3}}{26} = \frac{12 - 5\sqrt{3}}{26} \] ### Final Answer: \[ \sin(\alpha + \beta) = \frac{12 - 5\sqrt{3}}{26} \] Answer: \boxed{\dfrac{12\,-\,5\,\sqrt{3}}{26}}

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve for \(\sin(\alpha+\beta)\), \(\cos(\alpha+\beta)\), \(\sin(\alpha-\beta)\), and \(\tan(\alpha-\beta)\), we first need to determine the values of \(\sin \alpha\), \(\cos \alpha\), and \(\sin \beta\), \(\cos \beta\) based on the given conditions. ### Step 1: Determine \(\sin \alpha\) and \(\cos \alpha\) Since \(\tan \alpha = -\frac{12}{5}\) and \(\alpha\) is in the second quadrant (where sine is positive and cosine is negative), we can use the identity: \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \] Let \(\sin \alpha = 12k\) and \(\cos \alpha = -5k\) for some positive \(k\). Then we find \(k\) using the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] \[ (12k)^2 + (-5k)^2 = 1 \quad \Rightarrow \quad 144k^2 + 25k^2 = 1 \quad \Rightarrow \quad 169k^2 = 1 \quad \Rightarrow \quad k^2 = \frac{1}{169} \quad \Rightarrow \quad k = \frac{1}{13} \] Now we can find \(\sin \alpha\) and \(\cos \alpha\): \[ \sin \alpha = 12k = \frac{12}{13}, \quad \cos \alpha = -5k = -\frac{5}{13} \] ### Step 2: Determine \(\sin \beta\) and \(\cos \beta\) For \(\beta\), since \(\cos \beta = \frac{1}{2}\) and \(0 < \beta < \frac{\pi}{2}\), we can find \(\sin \beta\) using the Pythagorean identity: \[ \sin^2 \beta + \cos^2 \beta = 1 \] \[ \sin^2 \beta + \left(\frac{1}{2}\right)^2 = 1 \quad \Rightarrow \quad \sin^2 \beta + \frac{1}{4} = 1 \quad \Rightarrow \quad \sin^2 \beta = \frac{3}{4} \quad \Rightarrow \quad \sin \beta = \frac{\sqrt{3}}{2} \] ### Step 3: Calculate the required values Now we can calculate each part using the sine and cosine addition formulas: (a) \(\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta\): \[ \sin(\alpha + \beta) = \left(\frac{12}{13}\right)\left(\frac{1}{2}\right) + \left(-\frac{5}{13}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{12}{26} - \frac{5\sqrt{3}}{26} = \frac{12 - 5\sqrt{3}}{26} \] (b) \(\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta\): \[ \cos(\alpha + \beta) = \left(-\frac{5}{13}\right)\left(\frac{1}{2}\right) - \left(\frac{12}{13}\right)\left(\frac{\sqrt{3}}{2}\right) = -\frac{5}{26} - \frac{12\sqrt{3}}{26} = -\frac{5 + 12\sqrt{3}}{26} \] (c) \(\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta\): \[ \sin(\alpha - \beta) = \left(\frac{12}{13}\right)\left(\frac{1}{2}\right) - \left(-\frac{5}{13}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{12}{26} + \frac{5\sqrt{3}}{26} = \frac{12 + 5\sqrt{3}}{26} \] (d) \(\tan(\alpha - \beta) = \frac{\sin(\alpha - \

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy