Question
upstudy study bank question image url

3.(4 boda) Prelaskom na polarne koordinate izračunajte \( \int_{S}(2 x y-x) d S \) po donjoj polovini kružnog vijenca \( x^{2}+y^{2} \geq 1 ; x^{2}+y^{2} \leq 4 \).

Ask by Williams Mcguire. in Croatia
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Vrijednost integrala je \( \frac{14}{3} \).

Solution

Da bismo izračunali integral \( \int_{S}(2xy - x) \, dS \) preko donje polovice kružnog vijenca \( x^{2} + y^{2} \geq 1 \) i \( x^{2} + y^{2} \leq 4 \) pomoću polarnih koordinata, slijedimo sljedeće korake: ### 1. Pretvorba u polarne koordinate U polarnoj koordinati: \[ x = r \cos \theta, \quad y = r \sin \theta \] Element površine \( dS \) u polarnoj koordinati je: \[ dS = r \, dr \, d\theta \] Dakle, izraz integranda postaje: \[ 2xy - x = 2(r \cos \theta)(r \sin \theta) - r \cos \theta = 2r^{2} \cos \theta \sin \theta - r \cos \theta \] ### 2. Definiranje granica integracije Kružni vijenc je definiran s \( 1 \leq r \leq 2 \). Donja polovica vijenca odgovara uglovima \( \theta \) od \( \frac{\pi}{2} \) do \( \frac{3\pi}{2} \): \[ \theta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \] ### 3. Postavljanje integrala Integral postaje: \[ \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \int_{1}^{2} \left(2r^{2} \cos \theta \sin \theta - r \cos \theta\right) r \, dr \, d\theta = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \int_{1}^{2} \left(2r^{3} \cos \theta \sin \theta - r^{2} \cos \theta\right) dr \, d\theta \] ### 4. Izračunavanje unutarnjeg integrala po \( r \) \[ \int_{1}^{2} \left(2r^{3} \cos \theta \sin \theta - r^{2} \cos \theta\right) dr = 2 \cos \theta \sin \theta \left[\frac{r^{4}}{4}\right]_1^2 - \cos \theta \left[\frac{r^{3}}{3}\right]_1^2 \] \[ = 2 \cos \theta \sin \theta \left(\frac{16}{4} - \frac{1}{4}\right) - \cos \theta \left(\frac{8}{3} - \frac{1}{3}\right) \] \[ = 2 \cos \theta \sin \theta \cdot \frac{15}{4} - \cos \theta \cdot \frac{7}{3} = \frac{15}{2} \cos \theta \sin \theta - \frac{7}{3} \cos \theta \] ### 5. Izračunavanje vanjskog integrala po \( \theta \) \[ \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left(\frac{15}{2} \cos \theta \sin \theta - \frac{7}{3} \cos \theta\right) d\theta \] Razdvajamo integral: \[ \frac{15}{2} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos \theta \sin \theta \, d\theta - \frac{7}{3} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos \theta \, d\theta \] Prvo računamo: \[ \int \cos \theta \sin \theta \, d\theta = \frac{1}{2} \sin^{2} \theta \] Dakle: \[ \frac{15}{2} \left[\frac{1}{2} \sin^{2} \theta \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = \frac{15}{4} (\sin^{2}(\frac{3\pi}{2}) - \sin^{2}(\frac{\pi}{2})) = \frac{15}{4} (1 - 1) = 0 \] Zatim računamo: \[ \frac{7}{3} \left[ \sin \theta \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = \frac{7}{3} (\sin(\frac{3\pi}{2}) - \sin(\frac{\pi}{2})) = \frac{7}{3} (-1 - 1) = -\frac{14}{3} \] Ukupno: \[ 0 - \left(-\frac{14}{3}\right) = \frac{14}{3} \] ### Zaključak Vrijednost integrala je: \[ \boxed{\dfrac{14}{3}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Za prelazak na polarne koordinate, koristimo \( x = r \cos \theta \) i \( y = r \sin \theta \), gdje \( r \) predstavlja udaljenost od ishodišta, a \( \theta \) je kut. S obzirom na to da se radi o donjoj polovini kružnog vijenca, parametri će biti u okviru \( 1 \leq r \leq 2 \) i \( \theta \) će varirati od \( \pi \) do \( 2\pi \). Prvo, zamjenjujemo \( x \) i \( y \) u integralu: \[ \int_{S} (2xy - x) dS = \int_{S} (2(r \cos \theta)(r \sin \theta) - r \cos \theta) dS \] Dakle, integrand postaje \( 2r^2 \cos \theta \sin \theta - r \cos \theta \). Izračunavanjem dS u polarnoj koordinati, imamo \( dS = r dr d\theta \). Sada ćemo integrirati po \( r \) od 1 do 2 i po \( \theta \) od \( \pi \) do \( 2\pi \): \[ \int_{\pi}^{2\pi} \int_{1}^{2} \left( 2r^2 \cos \theta \sin \theta - r \cos \theta \right) r dr d\theta \] Izvršite integraciju po \( r \) i \( \theta \) da biste dobili konačan rezultat.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy