Question
upstudy study bank question image url

(1) For each of the following equations, state the order, degree and whether if is linear or non-linear and homogeneous or nonhomogeneous: (a) \( u_{t}-u_{x x}+1=0 \), (b) \( u_{t}-u_{x x}+x u=0 \) (c) \( u_{t}-u_{x x t}+u u_{x}=0 \), (d) \( u_{t t}-u_{x x}+x^{2}=0 \) (e) \( u_{x}+e^{u} u_{y}=0 \) (2) In each of the following, classify the equation as linear, nonlinear but quasi-linear, or fully non-linear: (a) \( u^{2} u_{x x}+u_{y}=\cos (u) \), (b) \( x^{2} u_{x}+y^{2} u_{y}+u_{x y}=2 x y \) (c) \( (x-y) u_{x}^{2}+u_{x y}=1 \), (d) \( x^{2} u_{y y}-y u_{x x}=\tan (u) \) (e) \( u_{x y}-u_{x}^{2}+u_{y}^{2}-\sin \left(u_{x}\right)=0 \), (f) \( u_{x}+u_{y}{ }^{2}-u_{x x}=4 \) (g) \( \frac{u_{y}}{u_{x}}=x^{2} \)

Ask by Tran Ramirez. in Saudi Arabia
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

(1) (a) - الرتبة: 2 - الدرجة: 1 - خطية/غير خطية: غير خطية - متجانسة/غير متجانسة: غير متجانسة (b) - الرتبة: 2 - الدرجة: 1 - خطية/غير خطية: غير خطية - متجانسة/غير متجانسة: غير متجانسة (c) - الرتبة: 3 - الدرجة: 2 - خطية/غير خطية: غير خطية - متجانسة/غير متجانسة: متجانسة (d) - الرتبة: 2 - الدرجة: 1 - خطية/غير خطية: غير خطية - متجانسة/غير متجانسة: غير متجانسة (e) - الرتبة: 2 - الدرجة: 1 - خطية/غير خطية: غير خطية - متجانسة/غير متجانسة: متجانسة (2) (a) - غير خطية بالكامل (b) - شبه خطية (c) - غير خطية بالكامل (d) - غير خطية بالكامل (e) - غير خطية بالكامل (f) - غير خطية ولكن شبه خطية (g) - غير خطية بالكامل

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

For equation (1): (a) This equation is of order 1, degree 1, linear, and nonhomogeneous due to the constant term \(1\). (b) Here we have order 1, degree 1, linear, and it’s nonhomogeneous because of the term \(x u\). (c) This one is of order 1, degree 1, non-linear, and nonhomogeneous due to the \(u u_{x}\) term. (d) This equation is of order 2, degree 2, linear, and nonhomogeneous because of the \(x^{2}\) term. (e) This is of order 1, degree 1, non-linear, and homogeneous as there are no additional terms. For equation (2): (a) This is classified as fully non-linear due to the presence of \(u^{2} u_{x x}\). (b) This equation is quasi-linear because it is linear in the highest-order derivatives but has nonlinear coefficients. (c) This equation is non-linear due to the \((x-y) u_{x}^{2}\) term. (d) Here, we find a fully non-linear equation because of the \(\tan(u)\) term. (e) This equation is also fully non-linear due to the presence of squared first derivatives and a sine function of one of the derivatives. (f) This is classified as quasi-linear as it features linear terms and may influence the equation’s structure. (g) This equation is non-linear because it represents a relationship involving \(u_{y}\) over \(u_{x}\), creating a geometrical representation.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy