Question

\( \int _{}^{}\frac{1}{x+\sqrt {x^{2}-1}} d x \)

Ask by Washington Cook. in Turkey
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \int \frac{1}{x + \sqrt{x^{2} - 1}} \, dx = \frac{1}{2}x^{2} - \frac{1}{2}x \sqrt{x^{2} - 1} + \frac{1}{2} \ln \left( x + \sqrt{x^{2} - 1} \right) + C \]

Solution

التكامل المطلوب هو: \[ \int \frac{1}{x + \sqrt{x^{2} - 1}} \, dx \] لحسابه، نتبع الخطوات التالية: 1. **مضاعفة الكسر بمرافق المقام:** \[ \frac{1}{x + \sqrt{x^{2} - 1}} \times \frac{x - \sqrt{x^{2} - 1}}{x - \sqrt{x^{2} - 1}} = \frac{x - \sqrt{x^{2} - 1}}{1} = x - \sqrt{x^{2} - 1} \] 2. **حساب التكامل:** \[ \int (x - \sqrt{x^{2} - 1}) \, dx = \int x \, dx - \int \sqrt{x^{2} - 1} \, dx \] 3. **حساب كل جزء على حدة:** \[ \int x \, dx = \frac{1}{2}x^{2} + C_1 \] \[ \int \sqrt{x^{2} - 1} \, dx = \frac{x}{2} \sqrt{x^{2} - 1} - \frac{1}{2} \ln \left| x + \sqrt{x^{2} - 1} \right| + C_2 \] 4. **جمع النتائج:** \[ \frac{1}{2}x^{2} - \left( \frac{x}{2} \sqrt{x^{2} - 1} - \frac{1}{2} \ln \left| x + \sqrt{x^{2} - 1} \right| \right) + C \] وبتبسيط الحدود نحصل على: \[ \int \frac{1}{x + \sqrt{x^{2} - 1}} \, dx = \frac{1}{2}x^{2} - \frac{1}{2}x \sqrt{x^{2} - 1} + \frac{1}{2} \ln \left( x + \sqrt{x^{2} - 1} \right) + C \] حيث \( C \) هو ثابت التكامل.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the integral \( \int \frac{1}{x+\sqrt{x^2-1}} \, dx \), we can use a clever substitution that simplifies our integrand. Notice that the expression \( x+\sqrt{x^2-1} \) can be related to the hyperbolic sine function. Let's make the substitution \( x = \cosh(t) \). With this substitution, we have \( dx = \sinh(t) \, dt \) and notice that \( \sqrt{x^2-1} = \sqrt{\cosh^2(t) - 1} = \sinh(t) \). Rewriting the integral, we get: \[ \int \frac{1}{\cosh(t) + \sinh(t)} \sinh(t) \, dt \] Now, simplifying the integrand gives: \[ \int \frac{\sinh(t)}{\cosh(t) + \sinh(t)} \, dt \] Using the identity \( \cosh(t) + \sinh(t) = e^t \), the integral simplifies to: \[ \int \frac{\sinh(t)}{e^t} \, dt = \int \frac{1}{2}(e^t - e^{-t}) e^{-t} \, dt = \frac{1}{2} \int (1 - e^{-2t}) \, dt \] Integrating gives: \[ \frac{1}{2} \left( t - \frac{1}{2} e^{-2t} \right) + C \] Now we just need to convert back to the original variable using \( t = \text{arcosh}(x) \): Thus, the solution can be rewritten in terms of \( x \) as: \[ \frac{1}{2} \left( \text{arcosh}(x) - \frac{1}{2(x^2 - 1)} \right) + C \] Now you have a comprehensive way to evaluate this integral!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy