Question
upstudy study bank question image url

\( \frac { ( y - 2,1 ) ^ { 2 } } { 2,25 } - \frac { ( x - 1,6 ) ^ { 2 } } { 2,56 } = 1 \)

Ask by Simpson Harrington. in Colombia
Nov 24,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

La ecuación representa una hipérbola con centro en \((1.6, 2.1)\), que se abre verticalmente y tiene semi-ejes de longitud \(1.5\) y \(1.6\).

Solution

La ecuación que has proporcionado es la forma estándar de una hipérbola. La ecuación es: \[ \frac{(y - 2.1)^2}{2.25} - \frac{(x - 1.6)^2}{2.56} = 1 \] En esta ecuación, podemos identificar los siguientes elementos: - El centro de la hipérbola es el punto \((1.6, 2.1)\). - El término \(\frac{(y - 2.1)^2}{2.25}\) indica que la hipérbola se abre hacia arriba y hacia abajo, ya que el término en \(y\) es positivo. - El valor \(2.25\) es el cuadrado de la semi-distancia en la dirección vertical, lo que significa que la semi-distancia en la dirección vertical es \(\sqrt{2.25} = 1.5\). - El valor \(2.56\) es el cuadrado de la semi-distancia en la dirección horizontal, lo que significa que la semi-distancia en la dirección horizontal es \(\sqrt{2.56} = 1.6\). Por lo tanto, la hipérbola tiene su centro en \((1.6, 2.1)\), se abre verticalmente y tiene semi-ejes de longitud \(1.5\) en la dirección vertical y \(1.6\) en la dirección horizontal.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

This equation resembles the standard form of a hyperbola, specifically its transverse axis aligned with the y-axis. The given equation can be rewritten in a more recognizable form by substituting the numbers with decimals: \( \frac{(y - 2.1)^2}{2.25} - \frac{(x - 1.6)^2}{2.56} = 1 \). Here, the center of the hyperbola is at the point \((1.6, 2.1)\), and the distances \( \sqrt{2.25} \) and \( \sqrt{2.56} \) are essential for understanding the shape and spread of the hyperbola. In real-world contexts, hyperbolas often model situations like the paths of certain spacecraft in orbital mechanics or the reflective properties of parabolic mirrors, which can focus light and sound. Understanding hyperbolas allows us to analyze systems ranging from telecommunications signals to the spread of diseases, where their unique shape helps describe the relationships between variables effectively. Embracing these connections makes math not just a series of numbers, but an exciting tool for exploring the world!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy