If \( \tan x=m+\frac{1}{m}, 90^{\circ} \leq x \leq 270^{\circ} \) and \( m^{2}+\frac{1}{m^{2}}=1 \) Calculate the value of \( x \) without the use of a calculator.
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To solve the given problem, we start with the equation \( m^2 + \frac{1}{m^2} = 1 \). We can manipulate this equation as follows: 1. Let \( m^2 = y \); thus, the equation becomes: \[ y + \frac{1}{y} = 1. \] Multiply both sides by \( y \) to eliminate the fraction: \[ y^2 - y + 1 = 0. \] 2. To find the solutions for \( y \), we use the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{-3}}{2}. \] This simplifies to: \[ y = \frac{1 \pm i\sqrt{3}}{2}. \] Thus, \( m^2 = \frac{1 \pm i\sqrt{3}}{2} \). 3. We find \( m = \sqrt{\frac{1 + i\sqrt{3}}{2}} \) and \( m = \sqrt{\frac{1 - i\sqrt{3}}{2}} \). To compute \( \tan x \), we substitute into the equation \( \tan x = m + \frac{1}{m} \). 4. Let's compute \( m + \frac{1}{m} \): - First, we need \( \frac{1}{m} = \sqrt{\frac{2}{1 + i\sqrt{3}}} \) and we can use conjugation to simplify: \[ \frac{1}{m} = \frac{1}{\sqrt{\frac{1 + i\sqrt{3}}{2}}} = \sqrt{\frac{2}{1 + i\sqrt{3}}} \cdot \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}} = \sqrt{\frac{2(1 - i\sqrt{3})}{1 + 3}} = \sqrt{\frac{2(1 - i\sqrt{3})}{4}} = \frac{1 - i\sqrt{3}}{2}. \] 5. Adding \( m \) plus \( \frac{1}{m} \): \[ m + \frac{1}{m} = \sqrt{\frac{1 + i\sqrt{3}}{2}} + \sqrt{\frac{1 - i\sqrt{3}}{2}}. \] This value can be shown to be equal to \( i \). 6. Recall from trigonometric identities, if \( \tan x = i \), then: \[ x = \tan^{-1}(i). \] Mathematically, this occurs at \( x = 90^\circ + k \cdot 180^\circ \) for \( k \in \mathbb{Z} \). 7. Given the domain \( 90^\circ \leq x \leq 270^\circ \): - \( k=0 \) gives \( x=90^\circ \) - \( k=1 \) gives \( x=270^\circ \) Thus, since we need the angle where \( \tan x \) gives a specific imaginary number, the only valid range will provide \( 90^\circ \). Therefore, the solution to the problem is: \[ \boxed{90^\circ}. \]