14. (v8-121-27) Geometrik progressiyaning birinchi hadi 1458 ga, maxraji \( \frac{1}{2} \) ga teng. Shu progressiyaning dastlabki to'rta hadi yig'indisini toping.
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Geometrik progressiyadagi har bir had, avvalgi hadning ma'lum bir koeffitsiyentga ko'paytirilishi bilan hosil bo'ladi. Bu holda, birinchi had \( a_1 = 1458 \) va maxraj \( q = \frac{1}{2} \) deb olib, dastlabki to'rtta hadni hisoblaymiz: \( a_2 = a_1 \cdot q = 1458 \cdot \frac{1}{2} = 729 \), \( a_3 = a_2 \cdot q = 729 \cdot \frac{1}{2} = 364.5 \), \( a_4 = a_3 \cdot q = 364.5 \cdot \frac{1}{2} = 182.25 \). To'rtta hadning yig'indisi \( 1458 + 729 + 364.5 + 182.25 = 2733.75 \) ga teng. Geometrik progressiyalarni aniqlash uchun qabul qilinayotgan koeffitsiyentni to'g'ri saqlash juda muhim. Ko'plab o'quvchilar maxrajni noto'g'ri qo'llashadi, bu esa yanada kichik yoki katta qiymatlarni keltirib chiqarishi mumkin. Shuning uchun muammoni hal etishda koeffitsiyentni to'g'ri aniqlash zarur.