Question
upstudy study bank question image url

5. Solve this system of equations. \( \left\{\begin{array}{l}3 x+4 y=36 \\ y=-\frac{1}{2} x+8\end{array}\right. \)

Ask by Maxwell Mullins. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La solución del sistema es \( x = 4 \) y \( y = 6 \).

Solution

Para resolver el sistema de ecuaciones: \[ \begin{cases} 3x + 4y = 36 \\ y = -\frac{1}{2}x + 8 \end{cases} \] **Paso 1: Sustituir la segunda ecuación en la primera** Sustituyamos \( y \) de la segunda ecuación en la primera ecuación: \[ 3x + 4\left(-\frac{1}{2}x + 8\right) = 36 \] **Paso 2: Simplificar la ecuación** Distribuimos el 4 dentro del paréntesis: \[ 3x - 2x + 32 = 36 \] Combinamos términos semejantes: \[ x + 32 = 36 \] **Paso 3: Resolver para \( x \)** Restamos 32 en ambos lados: \[ x = 36 - 32 \] \[ x = 4 \] **Paso 4: Encontrar el valor de \( y \)** Sustituimos \( x = 4 \) en la segunda ecuación: \[ y = -\frac{1}{2}(4) + 8 \] \[ y = -2 + 8 \] \[ y = 6 \] **Solución del sistema:** \[ x = 4 \quad \text{y} \quad y = 6 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve the system of equations, we can substitute the expression for \(y\) from the second equation into the first equation. Substituting \(y = -\frac{1}{2} x + 8\) into the first equation \(3x + 4y = 36\): \[ 3x + 4\left(-\frac{1}{2}x + 8\right) = 36 \] Distributing the 4: \[ 3x - 2x + 32 = 36 \] Now, combine like terms: \[ x + 32 = 36 \] Subtract 32 from both sides: \[ x = 4 \] Now, substitute \(x = 4\) back into the equation for \(y\): \[ y = -\frac{1}{2}(4) + 8 = -2 + 8 = 6 \] The solution to the system is \(x = 4\) and \(y = 6\). So, the final answer is \((4, 6)\).

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy