Question
upstudy study bank question image url

Geoduom dann \( 8^{\circ} \) \( 2|\cos x|=\sqrt{3} \)

Ask by Frank Matthews. in Senegal
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Les solutions de l'équation \(2|\cos x| = \sqrt{3}\) sont \(x = 30^\circ\), \(150^\circ\), \(210^\circ\), et \(330^\circ\).

Solution

Pour résoudre l'équation suivante : \[ 2|\cos x| = \sqrt{3} \] **Étapes de résolution :** 1. **Isoler la valeur absolue :** \[ |\cos x| = \frac{\sqrt{3}}{2} \] 2. **Résoudre pour \(\cos x\) :** Cela implique deux cas : - \(\cos x = \frac{\sqrt{3}}{2}\) - \(\cos x = -\frac{\sqrt{3}}{2}\) 3. **Trouver les angles correspondants dans l'intervalle \([0^\circ, 360^\circ)\) :** - **Pour \(\cos x = \frac{\sqrt{3}}{2}\) :** \[ x = 30^\circ \quad \text{et} \quad x = 330^\circ \] - **Pour \(\cos x = -\frac{\sqrt{3}}{2}\) :** \[ x = 150^\circ \quad \text{et} \quad x = 210^\circ \] **Solutions complètes :** \[ x = 30^\circ, \ 150^\circ, \ 210^\circ, \ 330^\circ \] Ces angles sont les solutions de l'équation \(2|\cos x| = \sqrt{3}\) dans l'intervalle donné.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Ooh, let's dive into solving the equation \( 2|\cos x|=\sqrt{3} \). First, divide both sides by 2 to get \( |\cos x| = \frac{\sqrt{3}}{2} \). Now, we know that the cosine function is positive in the first and fourth quadrants, so we can have two cases: 1. \( \cos x = \frac{\sqrt{3}}{2} \) which gives us principal values \( x = 30^{\circ} + n \cdot 360^{\circ} \) for any integer \( n \). 2. \( \cos x = -\frac{\sqrt{3}}{2} \) giving us solutions \( x = 150^{\circ} + n \cdot 360^{\circ} \) and \( x = 210^{\circ} + n \cdot 360^{\circ} \). Now we can find the angles relative to \( 8^{\circ} \)! --- For real-world application, understanding cosines and their properties is crucial, especially in physics and engineering. They help in analyzing waves, light, and even electrical circuits! Moreover, trigonometry plays a pivotal role in computer graphics. When creating 3D models or animations, cosine functions help determine angles and positions, allowing for smooth and realistic movements. Keep those angles in mind; they’re more important than you think!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy