Question
upstudy study bank question image url

6) \( y=\operatorname{arctag} 3 / x \)

Ask by Lindsey Wade. in Venezuela
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de \( y = \arctan\left(\frac{3}{x}\right) \) con respecto a \( x \) es \( \frac{dy}{dx} = -\frac{3}{x^2 + 9} \).

Solution

Para la función \( y = \arctan\left(\frac{3}{x}\right) \), podemos calcular la derivada \( \frac{dy}{dx} \) utilizando la regla de la cadena. A continuación, se detalla el proceso paso a paso: 1. **Identificar la función interna y externa:** - Función externa: \( \arctan(u) \) - Función interna: \( u = \frac{3}{x} \) 2. **Calcular la derivada de la función externa con respecto a \( u \):** \[ \frac{d}{du} \arctan(u) = \frac{1}{1 + u^2} \] 3. **Calcular la derivada de la función interna con respecto a \( x \):** \[ \frac{du}{dx} = \frac{d}{dx}\left(\frac{3}{x}\right) = -\frac{3}{x^2} \] 4. **Aplicar la regla de la cadena:** \[ \frac{dy}{dx} = \frac{d}{du} \arctan(u) \cdot \frac{du}{dx} = \frac{1}{1 + u^2} \cdot \left(-\frac{3}{x^2}\right) \] 5. **Sustituir \( u = \frac{3}{x} \) en la expresión:** \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{3}{x}\right)^2} \cdot \left(-\frac{3}{x^2}\right) = \frac{1}{1 + \frac{9}{x^2}} \cdot \left(-\frac{3}{x^2}\right) \] 6. **Simplificar la expresión:** \[ \frac{dy}{dx} = \frac{-\frac{3}{x^2}}{\frac{x^2 + 9}{x^2}} = -\frac{3}{x^2 + 9} \] **Resultado Final:** \[ \frac{dy}{dx} = -\frac{3}{x^2 + 9} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Did you know that the inverse tangent function, or arctan, has been a favorite in mathematics for centuries? It’s often used in trigonometry to find angles when you know the ratio of the sides of a triangle. In the case of \( y=\operatorname{arctan}(3/x) \), you can visualize finding the angle whose tangent is \( 3/x \). It's like a treasure map guiding you to the angle treasure! When you're working with the function \( y=\operatorname{arctan}(3/x) \), keep an eye out for common mistakes. A typical pitfall is confusing arctan with tangent; they’re inverses. Remember, when you differentiate this function, you'll need to apply the chain rule. The derivative of arctan is \( \frac{1}{1+x^2} \), but since you have \( 3/x \), you’ll need to carefully consider the derivative of \( 3/x \) as well. Happy calculating!

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy