Question
upstudy study bank question image url

\( \int \frac { \sqrt { x } } { 1 + \sqrt[ 4 ] { x } } d x \)

Ask by Bond Donnelly. in Iran
Jan 16,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral evaluates to: \[ \frac{4}{5}x^{5/4} - x + \frac{4}{3}x^{3/4} - 2x^{1/2} + 4x^{1/4} - 4\ln(1 + \sqrt[4]{x}) + C \] where \( C \) is the constant of integration.

Solution

To evaluate the integral \[ \int \frac{\sqrt{x}}{1 + \sqrt[4]{x}} \, dx, \] let's proceed with a substitution that simplifies the integral. **Step 1: Substitution** Let \( t = \sqrt[4]{x} = x^{1/4} \). Then: \[ x = t^4 \quad \text{and} \quad dx = 4t^3 \, dt. \] Also, \( \sqrt{x} = x^{1/2} = (t^4)^{1/2} = t^2 \). **Step 2: Rewrite the Integral** Substituting these into the original integral: \[ \int \frac{t^2}{1 + t} \cdot 4t^3 \, dt = 4 \int \frac{t^5}{1 + t} \, dt. \] **Step 3: Polynomial Division** To integrate \( \frac{t^5}{1 + t} \), perform polynomial division: \[ \frac{t^5}{1 + t} = t^4 - t^3 + t^2 - t + 1 - \frac{1}{1 + t}. \] Thus, the integral becomes: \[ 4 \int \left( t^4 - t^3 + t^2 - t + 1 - \frac{1}{1 + t} \right) dt. \] **Step 4: Integrate Term by Term** Integrate each term separately: \[ 4 \left( \frac{t^5}{5} - \frac{t^4}{4} + \frac{t^3}{3} - \frac{t^2}{2} + t \right) - 4 \ln|1 + t| + C, \] where \( C \) is the constant of integration. **Step 5: Substitute Back** Recall that \( t = x^{1/4} \). Substituting back: \[ \frac{4}{5} x^{5/4} - x + \frac{4}{3} x^{3/4} - 2x^{1/2} + 4x^{1/4} - 4 \ln\left(1 + \sqrt[4]{x}\right) + C. \] **Final Answer:** \[ \int \frac{\sqrt{x}}{1 + \sqrt[4]{x}} \, dx = \frac{4}{5}x^{5/4} - x + \frac{4}{3}x^{3/4} - 2\,x^{1/2} + 4\,x^{1/4} - 4\,\ln\left(1 + \sqrt[4]{x}\right) + C, \] where \( C \) is the constant of integration.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To tackle the integral \( \int \frac { \sqrt { x } } { 1 + \sqrt[ 4 ] { x } } d x \), let's make a substitution that simplifies our expression. Set \( u = \sqrt[4]{x} \). This implies that \( x = u^4 \) and \( dx = 4u^3 du \). Now, rewrite the integral in terms of \( u \): \[ \sqrt{x} = \sqrt{u^4} = u^2 \] Substituting everything gives us: \[ \int \frac{u^2}{1 + u} \cdot 4u^3 \, du = 4 \int \frac{u^5}{1 + u} \, du \] Now, simplify the integrand further by performing polynomial long division on \( \frac{u^5}{1+u} \): \[ u^5 = (1 + u)(u^4 - u^3 + u^2 - u + 1) + 1 \] Thus, \[ \frac{u^5}{1+u} = u^4 - u^3 + u^2 - u + 1 + \frac{1}{1+u} \] Now we can split the integral: \[ 4 \int (u^4 - u^3 + u^2 - u + 1 + \frac{1}{1+u}) \, du \] Calculating each term separately gives: \[ = 4 \left( \frac{u^5}{5} - \frac{u^4}{4} + \frac{u^3}{3} - \frac{u^2}{2} + u + \ln|1+u| \right) + C \] Finally, substitute back \( u = \sqrt[4]{x} \): \[ = \frac{4}{5} x^{5/4} - \frac{4}{4} x + \frac{4}{3} x^{3/4} - 2 x^{1/2} + 4 \sqrt[4]{x} + 4\ln(1+\sqrt[4]{x}) + C \] And that gives us the evaluated integral!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy