\( \int \frac { \sqrt { x } } { 1 + \sqrt[ 4 ] { x } } d x \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To tackle the integral \( \int \frac { \sqrt { x } } { 1 + \sqrt[ 4 ] { x } } d x \), let's make a substitution that simplifies our expression. Set \( u = \sqrt[4]{x} \). This implies that \( x = u^4 \) and \( dx = 4u^3 du \). Now, rewrite the integral in terms of \( u \): \[ \sqrt{x} = \sqrt{u^4} = u^2 \] Substituting everything gives us: \[ \int \frac{u^2}{1 + u} \cdot 4u^3 \, du = 4 \int \frac{u^5}{1 + u} \, du \] Now, simplify the integrand further by performing polynomial long division on \( \frac{u^5}{1+u} \): \[ u^5 = (1 + u)(u^4 - u^3 + u^2 - u + 1) + 1 \] Thus, \[ \frac{u^5}{1+u} = u^4 - u^3 + u^2 - u + 1 + \frac{1}{1+u} \] Now we can split the integral: \[ 4 \int (u^4 - u^3 + u^2 - u + 1 + \frac{1}{1+u}) \, du \] Calculating each term separately gives: \[ = 4 \left( \frac{u^5}{5} - \frac{u^4}{4} + \frac{u^3}{3} - \frac{u^2}{2} + u + \ln|1+u| \right) + C \] Finally, substitute back \( u = \sqrt[4]{x} \): \[ = \frac{4}{5} x^{5/4} - \frac{4}{4} x + \frac{4}{3} x^{3/4} - 2 x^{1/2} + 4 \sqrt[4]{x} + 4\ln(1+\sqrt[4]{x}) + C \] And that gives us the evaluated integral!