Question
upstudy study bank question image url

Hallar el valor promedio de la función dada en el intervalo indicado 4) \( f(x)=\frac{20 \sqrt{x^{2}-9}}{x} \) en \( [3,5] \)

Ask by Young Boone. in Colombia
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El valor promedio de la función \( f(x) = \frac{20 \sqrt{x^{2} - 9}}{x} \) en el intervalo \([3, 5]\) es aproximadamente **12.18**.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

Para hallar el valor promedio de la función \( f(x)=\frac{20 \sqrt{x^{2}-9}}{x} \) en el intervalo \( [3,5] \), utilizamos la fórmula del valor promedio: \[ \text{Valor Promedio} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \] En este caso, \( a = 3 \) y \( b = 5 \). Entonces, el valor promedio se calcularía como sigue: 1. Calculamos \( \int_{3}^{5} f(x) \, dx \). 2. Luego dividimos el resultado de la integral por \( 5 - 3 = 2 \). Realizando la integral: \[ \int \frac{20 \sqrt{x^{2}-9}}{x} \, dx \] Después de calcular la integral definida en el intervalo \( [3,5] \), podemos reemplazar en la fórmula y simplificar para encontrar el valor promedio. Asegúrate de calcular la integral con atención y de seguir los pasos correctamente. ¡Buena suerte!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy