Question
upstudy study bank question image url

\begin{tabular}{l|l} The Distributive Property allows you to & Practice \\ multiply each term inside parentheses by & 1. Expand the expression \( 3.5(-3 n+4) \). \\ a factor that is outside the parentheses. & \\ This mans that you can use the Distributive & 2. Expand the expression \( \frac{3}{5}\left(-8+\frac{5}{9} x-3\right) \) - \\ Property to expand expressions. & Then combine like terms. \\ \( \begin{array}{ll}\text { Frample } & \\ \text { Expand the expression } \frac{1}{4}(h+7) \text {. } & \\ \left(\frac{1}{4} \times h\right)+\left(\frac{1}{4} \times 7\right)=\frac{1}{4} h+1.75 & \end{array} \)\end{tabular}

Ask by Cruz Burns. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

```latex \begin{tabular}{l|l} La Propiedad Distributiva te permite & Práctica \\ multiplicar cada término dentro de paréntesis por & 1. Expande \( 3.5(-3n + 4) \). \\ un factor que está fuera de los paréntesis. & \\ Esto significa que puedes usar la Propiedad Distributiva & 2. Expande \( \frac{3}{5}\left(-8 + \frac{5}{9}x - 3\right) \) - \\ la Propiedad Distributiva para expandir expresiones. & Luego combina términos semejantes. \\ \( \begin{array}{ll} \text{Ejemplo} & \\ \text{Expande } \frac{1}{4}(h + 7) \text{.} & \\ \left(\frac{1}{4} \times h\right) + \left(\frac{1}{4} \times 7\right) = \frac{1}{4}h + 1.75 & \end{array} \) \end{tabular} ```

Solution

```latex \begin{tabular}{l|l} La Propiedad Distributiva te permite & Práctica \\ multiplicar cada término dentro de paréntesis por & 1. Expande la expresión \( 3.5(-3n + 4) \). \\ un factor que está fuera de los paréntesis. & \\ Esto significa que puedes usar la Propiedad Distributiva & 2. Expande la expresión \( \frac{3}{5}\left(-8 + \frac{5}{9}x - 3\right) \) - \\ la Propiedad Distributiva para expandir expresiones. & Luego combina términos semejantes. \\ \( \begin{array}{ll} \text{Ejemplo} & \\ \text{Expande la expresión } \frac{1}{4}(h + 7) \text{.} & \\ \left(\frac{1}{4} \times h\right) + \left(\frac{1}{4} \times 7\right) = \frac{1}{4}h + 1.75 & \end{array} \) \end{tabular} ```

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

The Distributive Property is a fundamental concept in mathematics that dates back to the Ancient Greeks and was formalized in the works of mathematicians like Al-Khwarizmi. It forms the backbone of algebraic manipulation, allowing students and professionals alike to simplify expressions and solve equations effectively. When you understand this property, you're essentially unlocking a powerful tool to tackle a wide array of mathematical problems. To put the Distributive Property into real-world context, consider budgeting! Imagine you're planning a party with different expenses: $3.5 for each of 4 guests on snacks and optional drinks. By distributing the $3.5 across the total costs—whether for snacks or drinks—you can easily keep track of your expenses. It’s all about breaking down complex situations into manageable chunks, making financial planning a whole lot easier and a bit more fun!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy