Question
upstudy study bank question image url

\( 11 f(x)=\cos ^{2} 2 x-\sin ^{2} 2 x \) funksiyaning eng kichik musbat davrini toping. \( \begin{array}{llll}\text { A) } \frac{\pi}{4} & \text { B) } \frac{\pi}{2} & \text { C) } \pi & \text { D) } 2 \pi\end{array} \)

Ask by Horton Mcdonald. in Uzbekistan
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Funksiyaning eng kichik musbat davri **B) \( \frac{\pi}{2} \)**.

Solution

Berilgan funksiya: \[ 11f(x) = \cos^{2}2x - \sin^{2}2x \] Avvalo, trigonometrik identifikni qo‘llaymiz: \[ \cos^{2}\theta - \sin^{2}\theta = \cos2\theta \] Shunday qilib: \[ 11f(x) = \cos4x \] \[ f(x) = \frac{1}{11}\cos4x \] Kosinus funksiyaning umumiy davri \( \frac{2\pi}{k} \) formulasi bilan hisoblanadi, bu yerda \( k \) — burilish soni. Bizda \( k = 4 \), demak: \[ T = \frac{2\pi}{4} = \frac{\pi}{2} \] Shunday qilib, funksiyaning eng kichik musbat davri: **B) \( \frac{\pi}{2} \)**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Keling, berilgan funktsiyani ko'rib chiqamiz: \( 11 f(x) = \cos^2 2x - \sin^2 2x \). Bu ifodani simplifikat qilish uchun \( \cos^2 2x - \sin^2 2x = \cos 4x \) formulasi yordamida yozamiz. Shunday qilib, \( f(x) = \frac{1}{11} \cos 4x \). Kosinus funksiyasining eng kichik musbat davri \( 2\pi \) ga teng, lekin bizda \( \cos 4x \) funksiyasi bor, shuning uchun bu davr $ \frac{2\pi}{4} = \frac{\pi}{2} $ ga qisqaradi. Natijada, eng kichik musbat davri \( \frac{\pi}{2} \) bo'ladi. To'g'ri javob: B) \( \frac{\pi}{2} \).

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy