Question
upstudy study bank question image url

Calculate the sum of each of the following geometric series: 1) \( 6+12+24+\ldots+6144 \) (2) \( 4-8+16-\ldots+16384 \) \[ -5+15-45+\ldots-3645 \] (4) \( 100-10+1-\ldots+\frac{1}{10000} \) \[ 200\left(1+(1,01)+(1.01)^{2}+\ldots+(1,01)^{2 R}\right) \] (6) \( -12-6-3-\ldots-\frac{3}{256} \)

Ask by Parsons Summers. in South Africa
Jan 11,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. **First Series (\(6 + 12 + 24 + \ldots + 6144\))**: - **Sum**: 12,282 2. **Second Series (\(4 - 8 + 16 - \ldots + 16384\))**: - **Sum**: 10,924 3. **Third Series (\(-5 + 15 - 45 + \ldots - 3645\))**: - **Sum**: -2,735 4. **Fourth Series (\(100 - 10 + 1 - \ldots + \frac{1}{10000}\))**: - **Sum**: Approximately 90.909 5. **Fifth Series (\(200\left(1 + (1.01) + (1.01)^{2} + \ldots + (1.01)^{2R}\right)\))**: - **Sum**: \( -20,000(1 - (1.01)^{2R + 1}) \) 6. **Sixth Series (\(-12 - 6 - 3 - \ldots - \frac{3}{256}\))**: - **Sum**: \(-12 \frac{1 - \left(-\frac{1}{2}\right)^{9}}{1 - \left(-\frac{1}{2}\right)}\)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To sum a geometric series, you can use the formula for the sum of the first \( n \) terms of a geometric series: \[ S_n = a \frac{1 - r^n}{1 - r} \] where \( S_n \) is the sum of the series, \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. Let's calculate the sums for the given series. 1) **\( 6 + 12 + 24 + \ldots + 6144 \)** This series has a first term \( a = 6 \) and a common ratio \( r = 2 \). To find \( n \): If \( 6144 = 6 \cdot 2^{n-1} \Longrightarrow 1024 = 2^{n-1} \Longrightarrow n - 1 = 10 \Longrightarrow n = 11 \). Now using the formula: \[ S_{11} = 6 \frac{1 - 2^{11}}{1 - 2} = 6 \frac{1 - 2048}{-1} = 6 \cdot 2047 = 12282 \] 2) **\( 4 - 8 + 16 - \ldots + 16384 \)** Here, \( a = 4 \) and \( r = -2 \). To find \( n \): If \( 16384 = 4 \cdot (-2)^{n-1} \Longrightarrow 4096 = (-2)^{n-1} \Longrightarrow n - 1 = 12 \Longrightarrow n = 13 \). Now applying the formula: \[ S_{13} = 4 \frac{1 - (-2)^{13}}{1 - (-2)} = 4 \frac{1 + 8192}{3} = 4 \cdot \frac{8193}{3} = 4 \cdot 2731 = 10924 \] 3) **\(-5 + 15 - 45 + \ldots - 3645\)** Here, \( a = -5 \) and \( r = -3 \). To find \( n \): If \( -3645 = -5 \cdot (-3)^{n-1} \Longrightarrow 729 = (-3)^{n-1} \Longrightarrow n - 1 = 6 \Longrightarrow n = 7 \). Using the formula: \[ S_{7} = -5 \frac{1 - (-3)^{7}}{1 - (-3)} = -5 \frac{1 + 2187}{4} = -5 \cdot \frac{2188}{4} = -5 \cdot 547 = -2735 \] 4) **\( 100 - 10 + 1 - \ldots + \frac{1}{10000} \)** Here, \( a = 100 \) and \( r = -0.1 \). To find \( n \): If \( \frac{1}{10000} = 100 \cdot (-0.1)^{n-1} \Longrightarrow 0.00001 = (-0.1)^{n-1} \Longrightarrow n - 1 = 5 \Longrightarrow n = 6 \). Now applying the formula: \[ S_{6} = 100 \frac{1 - (-0.1)^{6}}{1 - (-0.1)} = 100 \frac{1 - 0.000001}{1.1} = 100 \cdot \frac{0.999999}{1.1} \approx 90.909 \] 5) **\( 200\left(1 + (1.01) + (1.01)^{2} + \ldots + (1.01)^{2R}\right) \)** Here, \( a = 200 \) and \( r = 1.01 \). To apply the geometric series sum formula, we'd need to clarify \( R \), but generally: \[ S = 200 \cdot \frac{1 - (1.01)^{2(R+1)}}{1 - 1.01} = 200 \cdot \frac{(1.01)^{2(R+1)} - 1}{-0.01} = -20000 \cdot \left( (1.01)^{2(R+1)} - 1 \right). \] 6) **\( -12 - 6 - 3 - \ldots - \frac{3

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy