Answer
The general solution to the differential equation \( (x^3 + y^3) \, dx = (x^2 y + x y^2) \, dy \) is:
\[
(x - y) e^{\frac{y}{x}} = C
\]
where \( C \) is an arbitrary constant.
Solution
To solve the differential equation:
\[
(x^3 + y^3) \, dx = (x^2 y + x y^2) \, dy
\]
we can follow these steps:
### **1. Rewrite the Equation**
First, bring all terms to one side to set the equation to zero:
\[
(x^3 + y^3) \, dx - (x^2 y + x y^2) \, dy = 0
\]
### **2. Check for Exactness**
A differential equation of the form \( M \, dx + N \, dy = 0 \) is **exact** if:
\[
\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}
\]
Here,
- \( M = x^3 + y^3 \)
- \( N = -(x^2 y + x y^2) \)
Compute the partial derivatives:
\[
\frac{\partial M}{\partial y} = 3y^2
\]
\[
\frac{\partial N}{\partial x} = -(2xy + y^2)
\]
Since \( \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \), the equation is **not exact**.
### **3. Make the Equation Homogeneous**
To handle non-exact equations, we can look for an integrating factor or use substitution techniques. In this case, the equation is **homogeneous**, so we'll use the substitution:
\[
y = v x \quad \Rightarrow \quad dy = v \, dx + x \, dv
\]
### **4. Substitute and Simplify**
Replace \( y \) and \( dy \) in the original equation:
\[
(x^3 + (v x)^3) \, dx = (x^2 \cdot v x + x \cdot v^2 x^2) (v \, dx + x \, dv)
\]
Simplify each term:
\[
x^3 (1 + v^3) \, dx = x^3 (v + v^2) (v \, dx + x \, dv)
\]
Divide both sides by \( x^3 \):
\[
(1 + v^3) \, dx = (v + v^2)(v \, dx + x \, dv)
\]
Expand the right-hand side:
\[
(1 + v^3) \, dx = (v^2 + v^3) \, dx + (v + v^2) x \, dv
\]
Subtract \( (v^2 + v^3) \, dx \) from both sides:
\[
(1 - v^2) \, dx = (v + v^2) x \, dv
\]
### **5. Separate Variables**
Divide both sides by \( x(1 - v^2) \):
\[
\frac{dx}{x} = \frac{v + v^2}{1 - v^2} \, dv
\]
Simplify the right-hand side:
\[
\frac{v + v^2}{1 - v^2} = \frac{v(1 + v)}{(1 - v)(1 + v)} = \frac{v}{1 - v}
\]
Thus, the equation becomes:
\[
\frac{dx}{x} = \frac{v}{1 - v} \, dv
\]
### **6. Integrate Both Sides**
Integrate both sides:
\[
\int \frac{1}{x} \, dx = \int \frac{v}{1 - v} \, dv
\]
**Left Side:**
\[
\int \frac{1}{x} \, dx = \ln |x| + C_1
\]
**Right Side:**
\[
\int \frac{v}{1 - v} \, dv
\]
Let’s set \( u = 1 - v \), then \( du = -dv \). Rewrite the integral:
\[
\int \frac{v}{1 - v} \, dv = -\int \frac{(1 - u)}{u} \, du = -\int \left(1 - \frac{1}{u}\right) \, du = -u + \ln |u| + C_2
\]
Substitute back \( u = 1 - v \):
\[
- (1 - v) + \ln |1 - v| + C_2 = v - 1 + \ln |1 - v| + C_2
\]
### **7. Combine the Results**
Combine the integrated forms:
\[
\ln |x| = v - 1 + \ln |1 - v| + C
\]
where \( C = C_2 - C_1 \) is the constant of integration.
### **8. Substitute Back \( v = \frac{y}{x} \)**
Recall that \( v = \frac{y}{x} \). Substitute back:
\[
\ln x = \frac{y}{x} - 1 + \ln \left(1 - \frac{y}{x}\right) + C
\]
Rearrange terms:
\[
\ln x + 1 - \frac{y}{x} = \ln \left(1 - \frac{y}{x}\right) + C
\]
For simplicity, we can write the solution in implicit form:
\[
(x - y) e^{\frac{y}{x}} = K
\]
where \( K = e^{C} \) is a new constant.
### **9. Final General Solution**
\[
(x - y) e^{\frac{y}{x}} = C
\]
where \( C \) is an arbitrary constant.
---
**Summary:**
The general solution to the differential equation:
\[
(x^3 + y^3) \, dx = (x^2 y + x y^2) \, dy
\]
is:
\[
(x - y) e^{\frac{y}{x}} = C
\]
where \( C \) is an arbitrary constant.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution