Question
upstudy study bank question image url

EXERCISE 5 Simplify the following expressions, without the use of a calculator: \( \begin{array}{ll}\text { (1) } \sqrt{12}+\sqrt{27}-\sqrt{3} & \text { (2) } \sqrt{18}-\sqrt{50}-\sqrt{32} \\ \text { (3) } \sqrt{6} \times \sqrt{3} & \text { (4) } \frac{\sqrt{75}}{\sqrt{3}}\end{array} \)

Ask by Boone Barnett. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( 4\sqrt{3} \), \( -6\sqrt{2} \), \( 3\sqrt{2} \), \( 5 \)

Solution

Sure, let's simplify each expression step by step. ### **(1) \( \sqrt{12} + \sqrt{27} - \sqrt{3} \)** **Step 1:** Simplify each square root by factoring out perfect squares. - \( \sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3} \) - \( \sqrt{27} = \sqrt{9 \times 3} = \sqrt{9} \times \sqrt{3} = 3\sqrt{3} \) - \( \sqrt{3} \) remains as is. **Step 2:** Combine like terms. - \( 2\sqrt{3} + 3\sqrt{3} - \sqrt{3} = (2 + 3 - 1)\sqrt{3} = 4\sqrt{3} \) **Final Answer:** \( 4\sqrt{3} \) --- ### **(2) \( \sqrt{18} - \sqrt{50} - \sqrt{32} \)** **Step 1:** Simplify each square root by factoring out perfect squares. - \( \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \) - \( \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2} \) - \( \sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{2} = 4\sqrt{2} \) **Step 2:** Combine like terms. - \( 3\sqrt{2} - 5\sqrt{2} - 4\sqrt{2} = (3 - 5 - 4)\sqrt{2} = (-6)\sqrt{2} \) - Since radicals are typically expressed with positive coefficients, you can write it as \( -6\sqrt{2} \) or \( 6\sqrt{2} \) with a negative sign depending on the context. **Final Answer:** \( -6\sqrt{2} \) --- ### **(3) \( \sqrt{6} \times \sqrt{3} \)** **Step 1:** Use the property \( \sqrt{a} \times \sqrt{b} = \sqrt{a \times b} \). - \( \sqrt{6} \times \sqrt{3} = \sqrt{6 \times 3} = \sqrt{18} \) **Step 2:** Simplify \( \sqrt{18} \). - \( \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \) **Final Answer:** \( 3\sqrt{2} \) --- ### **(4) \( \frac{\sqrt{75}}{\sqrt{3}} \)** **Step 1:** Simplify \( \sqrt{75} \). - \( \sqrt{75} = \sqrt{25 \times 3} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3} \) **Step 2:** Divide by \( \sqrt{3} \). - \( \frac{5\sqrt{3}}{\sqrt{3}} = 5 \times \frac{\sqrt{3}}{\sqrt{3}} = 5 \times 1 = 5 \) Alternatively, you can rationalize the denominator: - \( \frac{\sqrt{75}}{\sqrt{3}} = \frac{\sqrt{75} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{225}}{3} = \frac{15}{3} = 5 \) **Final Answer:** \( 5 \) --- **Summary of Simplified Expressions:** 1. \( 4\sqrt{3} \) 2. \( -6\sqrt{2} \) 3. \( 3\sqrt{2} \) 4. \( 5 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expressions, let's break them down step by step! For (1) \( \sqrt{12}+\sqrt{27}-\sqrt{3} \): First, simplify each square root: \( \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3} \), \( \sqrt{27} = \sqrt{9 \cdot 3} = 3\sqrt{3} \), and \( \sqrt{3} \) remains the same. So, \( 2\sqrt{3} + 3\sqrt{3} - \sqrt{3} = (2 + 3 - 1)\sqrt{3} = 4\sqrt{3} \). For (2) \( \sqrt{18}-\sqrt{50}-\sqrt{32} \): Simplifying gives us: \( \sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2} \), \( \sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2} \), and \( \sqrt{32} = \sqrt{16 \cdot 2} = 4\sqrt{2} \). Thus, \( 3\sqrt{2} - 5\sqrt{2} - 4\sqrt{2} = (3 - 5 - 4)\sqrt{2} = -6\sqrt{2} \). For (3) \( \sqrt{6} \times \sqrt{3} \): Using the property of square roots, we have \( \sqrt{6 \times 3} = \sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2} \). For (4) \( \frac{\sqrt{75}}{\sqrt{3}} \): This can be written as \( \sqrt{\frac{75}{3}} = \sqrt{25} = 5 \). Putting it all together, the simplified expressions are: (1) \( 4\sqrt{3} \) (2) \( -6\sqrt{2} \) (3) \( 3\sqrt{2} \) (4) \( 5 \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy