EXERCISE 5 Simplify the following expressions, without the use of a calculator: \( \begin{array}{ll}\text { (1) } \sqrt{12}+\sqrt{27}-\sqrt{3} & \text { (2) } \sqrt{18}-\sqrt{50}-\sqrt{32} \\ \text { (3) } \sqrt{6} \times \sqrt{3} & \text { (4) } \frac{\sqrt{75}}{\sqrt{3}}\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To simplify the expressions, let's break them down step by step! For (1) \( \sqrt{12}+\sqrt{27}-\sqrt{3} \): First, simplify each square root: \( \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3} \), \( \sqrt{27} = \sqrt{9 \cdot 3} = 3\sqrt{3} \), and \( \sqrt{3} \) remains the same. So, \( 2\sqrt{3} + 3\sqrt{3} - \sqrt{3} = (2 + 3 - 1)\sqrt{3} = 4\sqrt{3} \). For (2) \( \sqrt{18}-\sqrt{50}-\sqrt{32} \): Simplifying gives us: \( \sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2} \), \( \sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2} \), and \( \sqrt{32} = \sqrt{16 \cdot 2} = 4\sqrt{2} \). Thus, \( 3\sqrt{2} - 5\sqrt{2} - 4\sqrt{2} = (3 - 5 - 4)\sqrt{2} = -6\sqrt{2} \). For (3) \( \sqrt{6} \times \sqrt{3} \): Using the property of square roots, we have \( \sqrt{6 \times 3} = \sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2} \). For (4) \( \frac{\sqrt{75}}{\sqrt{3}} \): This can be written as \( \sqrt{\frac{75}{3}} = \sqrt{25} = 5 \). Putting it all together, the simplified expressions are: (1) \( 4\sqrt{3} \) (2) \( -6\sqrt{2} \) (3) \( 3\sqrt{2} \) (4) \( 5 \)