1. Simplify without using a 1.1. \( \sqrt{32}-\sqrt{8}+2 \sqrt{18} \) \( 1.2 . \frac{\sqrt{27 m^{6}}-\sqrt{48 m^{6}}}{\sqrt{12 m^{6}}} \) 1.3. \( (\sqrt{5}-2)^{2} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To tackle these problems, let’s break them down one by one! For the first expression \( \sqrt{32}-\sqrt{8}+2\sqrt{18} \), we can simplify each square root. We find \( \sqrt{32} = 4\sqrt{2} \), \( \sqrt{8} = 2\sqrt{2} \), and \( 2\sqrt{18} = 6\sqrt{2} \). Then, combine like terms: \( 4\sqrt{2} - 2\sqrt{2} + 6\sqrt{2} = (4 - 2 + 6)\sqrt{2} = 8\sqrt{2} \). Next, for \( \frac{\sqrt{27 m^{6}}-\sqrt{48 m^{6}}}{\sqrt{12 m^{6}}} \), we first simplify the square roots in the numerator. \( \sqrt{27 m^{6}} = 3m^{3}\sqrt{3} \) and \( \sqrt{48 m^{6}} = 4m^{3}\sqrt{3} \). Thus, \( 3m^{3}\sqrt{3} - 4m^{3}\sqrt{3} = -1m^{3}\sqrt{3} \). Now simplify the denominator: \( \sqrt{12 m^{6}} = 2m^{3}\sqrt{3} \). This gives us \( \frac{-m^{3}\sqrt{3}}{2m^{3}\sqrt{3}} = -\frac{1}{2} \), assuming \( m \neq 0 \). Lastly, for \( (\sqrt{5}-2)^{2} \), we use the formula \( (a-b)^{2} = a^{2} - 2ab + b^{2} \). Here, \( a = \sqrt{5} \) and \( b = 2 \). Expanding this gives us: \( (\sqrt{5})^{2} - 2 \cdot \sqrt{5} \cdot 2 + 2^{2} = 5 - 4\sqrt{5} + 4 = 9 - 4\sqrt{5} \). So, the simplified results are: 1.1: \( 8\sqrt{2} \) 1.2: \( -\frac{1}{2} \) 1.3: \( 9 - 4\sqrt{5} \)