Question
upstudy study bank question image url

1. Simplify without using a 1.1. \( \sqrt{32}-\sqrt{8}+2 \sqrt{18} \) \( 1.2 . \frac{\sqrt{27 m^{6}}-\sqrt{48 m^{6}}}{\sqrt{12 m^{6}}} \) 1.3. \( (\sqrt{5}-2)^{2} \)

Ask by Ortiz Griffiths. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( \sqrt{32} - \sqrt{8} + 2\sqrt{18} = 8\sqrt{2} \) 2. \( \frac{\sqrt{27m^{6}} - \sqrt{48m^{6}}}{\sqrt{12m^{6}}} = -\frac{1}{2} \) 3. \( (\sqrt{5} - 2)^{2} = 9 - 4\sqrt{5} \)

Solution

Calculate or simplify the expression \( \sqrt{32}-\sqrt{8}+2\sqrt{18} \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{32}-\sqrt{8}+2\sqrt{18}\) - step1: Simplify the root: \(4\sqrt{2}-\sqrt{8}+2\sqrt{18}\) - step2: Simplify the root: \(4\sqrt{2}-2\sqrt{2}+2\sqrt{18}\) - step3: Simplify the root: \(4\sqrt{2}-2\sqrt{2}+2\times 3\sqrt{2}\) - step4: Multiply the terms: \(4\sqrt{2}-2\sqrt{2}+6\sqrt{2}\) - step5: Collect like terms: \(\left(4-2+6\right)\sqrt{2}\) - step6: Calculate: \(8\sqrt{2}\) Calculate or simplify the expression \( \frac{\sqrt{27m^{6}}-\sqrt{48m^{6}}}{\sqrt{12m^{6}}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{\sqrt{27m^{6}}-\sqrt{48m^{6}}}{\sqrt{12m^{6}}}\) - step1: Simplify the root: \(\frac{3\sqrt{3}\times m^{3}-\sqrt{48m^{6}}}{\sqrt{12m^{6}}}\) - step2: Simplify the root: \(\frac{3\sqrt{3}\times m^{3}-4\sqrt{3}\times m^{3}}{\sqrt{12m^{6}}}\) - step3: Simplify the root: \(\frac{3\sqrt{3}\times m^{3}-4\sqrt{3}\times m^{3}}{2\sqrt{3}\times m^{3}}\) - step4: Subtract the terms: \(\frac{-\sqrt{3}\times m^{3}}{2\sqrt{3}\times m^{3}}\) - step5: Simplify the expression: \(\frac{-\sqrt{3}}{2\sqrt{3}}\) - step6: Reduce the fraction: \(\frac{-1}{2}\) - step7: Rewrite the fraction: \(-\frac{1}{2}\) Calculate or simplify the expression \( (\sqrt{5}-2)^{2} \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt{5}-2\right)^{2}\) - step1: Expand the expression: \(\left(\sqrt{5}\right)^{2}-2\sqrt{5}\times 2+2^{2}\) - step2: Calculate: \(5-4\sqrt{5}+4\) - step3: Add the numbers: \(9-4\sqrt{5}\) The simplified expressions are: 1. \( \sqrt{32}-\sqrt{8}+2\sqrt{18} = 8\sqrt{2} \) 2. \( \frac{\sqrt{27m^{6}}-\sqrt{48m^{6}}}{\sqrt{12m^{6}}} = -\frac{1}{2} \) 3. \( (\sqrt{5}-2)^{2} = 9-4\sqrt{5} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To tackle these problems, let’s break them down one by one! For the first expression \( \sqrt{32}-\sqrt{8}+2\sqrt{18} \), we can simplify each square root. We find \( \sqrt{32} = 4\sqrt{2} \), \( \sqrt{8} = 2\sqrt{2} \), and \( 2\sqrt{18} = 6\sqrt{2} \). Then, combine like terms: \( 4\sqrt{2} - 2\sqrt{2} + 6\sqrt{2} = (4 - 2 + 6)\sqrt{2} = 8\sqrt{2} \). Next, for \( \frac{\sqrt{27 m^{6}}-\sqrt{48 m^{6}}}{\sqrt{12 m^{6}}} \), we first simplify the square roots in the numerator. \( \sqrt{27 m^{6}} = 3m^{3}\sqrt{3} \) and \( \sqrt{48 m^{6}} = 4m^{3}\sqrt{3} \). Thus, \( 3m^{3}\sqrt{3} - 4m^{3}\sqrt{3} = -1m^{3}\sqrt{3} \). Now simplify the denominator: \( \sqrt{12 m^{6}} = 2m^{3}\sqrt{3} \). This gives us \( \frac{-m^{3}\sqrt{3}}{2m^{3}\sqrt{3}} = -\frac{1}{2} \), assuming \( m \neq 0 \). Lastly, for \( (\sqrt{5}-2)^{2} \), we use the formula \( (a-b)^{2} = a^{2} - 2ab + b^{2} \). Here, \( a = \sqrt{5} \) and \( b = 2 \). Expanding this gives us: \( (\sqrt{5})^{2} - 2 \cdot \sqrt{5} \cdot 2 + 2^{2} = 5 - 4\sqrt{5} + 4 = 9 - 4\sqrt{5} \). So, the simplified results are: 1.1: \( 8\sqrt{2} \) 1.2: \( -\frac{1}{2} \) 1.3: \( 9 - 4\sqrt{5} \)

Latest Pre Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy