Question
upstudy study bank question image url

Evaluate. \[ \sin \left(\frac{5 \pi}{3}\right) \cos \left(-\frac{\pi}{6}\right)=\square \]

Ask by Mejia Lindsey. in the United States
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\(-0.75\)

Solution

Calculate or simplify the expression \( \sin\left(\frac{5\pi}{3}\right) \cos\left(-\frac{\pi}{6}\right) \). Calculate the value by following steps: - step0: Calculate: \(\sin\left(\frac{5\pi }{3}\right)\cos\left(-\frac{\pi }{6}\right)\) - step1: Calculate: \(\sin\left(\frac{5\pi }{3}\right)\cos\left(\frac{\pi }{6}\right)\) - step2: Calculate the trigonometric value: \(-\frac{\sqrt{3}}{2}\cos\left(\frac{\pi }{6}\right)\) - step3: Calculate the trigonometric value: \(-\frac{\sqrt{3}}{2}\times \frac{\sqrt{3}}{2}\) - step4: Multiply the fractions: \(-\frac{\sqrt{3}\times \sqrt{3}}{2\times 2}\) - step5: Multiply: \(-\frac{3}{4}\) The value of \(\sin \left(\frac{5 \pi}{3}\right) \cos \left(-\frac{\pi}{6}\right)\) is \(-\frac{3}{4}\) or \(-0.75\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate the expression \(\sin \left(\frac{5 \pi}{3}\right) \cos \left(-\frac{\pi}{6}\right)\), we will find the values of the sine and cosine functions involved. First, we evaluate \(\sin \left(\frac{5 \pi}{3}\right)\). The angle \(\frac{5 \pi}{3}\) is equivalent to \(360^\circ - 60^\circ = 300^\circ\). The sine of an angle in the fourth quadrant (like \(300^\circ\)) is negative, and it is equal to the sine of its reference angle, which is \(60^\circ\). \[ \sin \left(300^\circ\right) = -\sin \left(60^\circ\right) = -\frac{\sqrt{3}}{2} \] Next, we evaluate \(\cos \left(-\frac{\pi}{6}\right)\). The cosine function is even, so \(\cos(-\theta) = \cos(\theta)\). Thus, \[ \cos \left(-\frac{\pi}{6}\right) = \cos \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] Now, we can substitute these values back into our original expression: \[ \sin \left(\frac{5 \pi}{3}\right) \cos \left(-\frac{\pi}{6}\right) = \left(-\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) \] Multiplying these two fractions together yields: \[ -\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = -\frac{3}{4} \] Thus, the final answer is: \[ \boxed{-\frac{3}{4}} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy