Question
Lixa \( \frac{x}{4}-3>-2 \)
Ask by Collins Dawson. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( x > 4 \)
Solution
Claro! Vamos resolver a desigualdade passo a passo:
\[
\frac{x}{4} - 3 > -2
\]
**Passo 1: Isolar o termo com \( x \)**
Adicionar 3 a ambos os lados da desigualdade para eliminar o -3 do lado esquerdo.
\[
\frac{x}{4} - 3 + 3 > -2 + 3
\]
\[
\frac{x}{4} > 1
\]
**Passo 2: Eliminar o denominador**
Multiplicar ambos os lados por 4 para isolar \( x \).
\[
4 \cdot \frac{x}{4} > 1 \cdot 4
\]
\[
x > 4
\]
**Solução Final:**
\[
x > 4
\]
Isso significa que qualquer valor de \( x \) que seja maior que 4 satisfaz a desigualdade original.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To solve the inequality \( \frac{x}{4}-3>-2 \), start by isolating the variable. First, add 3 to both sides: \( \frac{x}{4} > 1 \). Next, multiply both sides by 4 to eliminate the fraction: \( x > 4 \). So the solution is \( x > 4 \). When you work with inequalities, be careful of sign changes, particularly when multiplying or dividing by negative numbers! Always keep an eye on that; it can sneak up on you!