Question
upstudy study bank question image url

Retto nel piano cartesiano Determina per ciascuna delle rette di equazioni \( x-4 y+7=0,2 x+6 y-7=0 \) e \( \quad 2 y-x-4=0 \) il relativo punto di ordinata \( -\frac{1}{2} \).

Ask by Rodriguez Robbins. in Italy
Jan 01,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Iscrizione al piano cartesiano: - **Retta \( x - 4y + 7 = 0 \):** Punto \( (-9, -\frac{1}{2}) \) - **Retta \( 2x + 6y - 7 = 0 \):** Punto \( (5, -\frac{1}{2}) \) - **Retta \( 2y - x - 4 = 0 \):** Punto \( (-5, -\frac{1}{2}) \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

Per trovare il punto di ordinata \( -\frac{1}{2} \) su ciascuna delle rette, dobbiamo sostituire \( y = -\frac{1}{2} \) nelle equazioni delle rette e risolvere per \( x \). 1. **Per la retta \( x - 4y + 7 = 0 \)**: \[ x - 4\left(-\frac{1}{2}\right) + 7 = 0 \\ x + 2 + 7 = 0 \\ x + 9 = 0 \\ x = -9 \] Quindi, il punto è \( (-9, -\frac{1}{2}) \). 2. **Per la retta \( 2x + 6y - 7 = 0 \)**: \[ 2x + 6\left(-\frac{1}{2}\right) - 7 = 0 \\ 2x - 3 - 7 = 0 \\ 2x - 10 = 0 \\ 2x = 10 \\ x = 5 \] Così, il punto è \( (5, -\frac{1}{2}) \). 3. **Per la retta \( 2y - x - 4 = 0 \)**: \[ 2\left(-\frac{1}{2}\right) - x - 4 = 0 \\ -1 - x - 4 = 0 \\ -x - 5 = 0 \\ x = -5 \] Pertanto, il punto è \( (-5, -\frac{1}{2}) \). Riassumendo, i punti di ordinata \( -\frac{1}{2} \) per le rispettive rette sono: 1. \( (-9, -\frac{1}{2}) \) 2. \( (5, -\frac{1}{2}) \) 3. \( (-5, -\frac{1}{2}) \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy