Answer
**Solutions:**
1. **L.2:** The sum of the first 12 terms is **-341.25**.
2. **L.3:** The sum is **31.9375** or \( 31 \frac{15}{16} \).
3. **L.4:** The value of \( m \) is **6**.
4. **L.5:** The least value of \( p \) is **10**.
Solution
Let's solve each of the problems step by step.
---
## **L.2 Calculate the sum of the first 12 terms of the geometric sequence \( \frac{1}{4} ;-\frac{1}{2} ; 1 \)**
### **Solution:**
1. **Identify the first term (\( a_1 \)) and the common ratio (\( r \)):**
- \( a_1 = \frac{1}{4} \)
- To find \( r \), divide the second term by the first term:
\[
r = \frac{-\frac{1}{2}}{\frac{1}{4}} = -2
\]
2. **Use the formula for the sum of the first \( n \) terms of a geometric series:**
\[
S_n = a_1 \times \frac{1 - r^n}{1 - r}
\]
3. **Plug in the values:**
\[
S_{12} = \frac{1}{4} \times \frac{1 - (-2)^{12}}{1 - (-2)} = \frac{1}{4} \times \frac{1 - 4096}{3} = \frac{1}{4} \times \frac{-4095}{3} = \frac{-4095}{12} = -341.25
\]
### **Answer:**
The sum of the first 12 terms is **-341.25**.
---
## **L.3 Calculate \( \sum_{m=3}^{11} 8\left(\frac{1}{2}\right)^{m-4} \)**
### **Solution:**
1. **Simplify the exponent:**
\[
8\left(\frac{1}{2}\right)^{m-4} = 8 \times 2^{-(m-4)} = 8 \times 2^{4-m} = 128 \times \left(\frac{1}{2}\right)^m
\]
2. **Compute each term from \( m = 3 \) to \( m = 11 \):**
| \( m \) | \( 8\left(\frac{1}{2}\right)^{m-4} \) |
|---------|---------------------------------------|
| 3 | \( 8 \times 2 = 16 \) |
| 4 | \( 8 \times 1 = 8 \) |
| 5 | \( 8 \times \frac{1}{2} = 4 \) |
| 6 | \( 8 \times \frac{1}{4} = 2 \) |
| 7 | \( 8 \times \frac{1}{8} = 1 \) |
| 8 | \( 8 \times \frac{1}{16} = 0.5 \) |
| 9 | \( 8 \times \frac{1}{32} = 0.25 \) |
| 10 | \( 8 \times \frac{1}{64} = 0.125 \) |
| 11 | \( 8 \times \frac{1}{128} = 0.0625 \) |
3. **Sum all the terms:**
\[
16 + 8 + 4 + 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 31.9375
\]
Alternatively, expressed as a fraction:
\[
31 \frac{15}{16}
\]
### **Answer:**
The sum is **31.9375** or \( 31 \frac{15}{16} \).
---
## **L.4 Determine \( m \) if: \( \sum_{p=1}^{m}(-8)\left(\frac{1}{2}\right)^{p-1} = -15 \frac{3}{4} \)**
### **Solution:**
1. **Identify the first term (\( a_1 \)) and the common ratio (\( r \)):**
- \( a_1 = -8 \times \left(\frac{1}{2}\right)^{0} = -8 \)
- \( r = \frac{1}{2} \)
2. **Use the sum formula for a geometric series:**
\[
S_m = a_1 \times \frac{1 - r^m}{1 - r} = -8 \times \frac{1 - \left(\frac{1}{2}\right)^m}{1 - \frac{1}{2}} = -16 \times \left(1 - \left(\frac{1}{2}\right)^m\right)
\]
3. **Set the sum equal to \(-15.75\) and solve for \( m \):**
\[
-16 \times \left(1 - \left(\frac{1}{2}\right)^m\right) = -15.75 \\
\Rightarrow 1 - \left(\frac{1}{2}\right)^m = \frac{15.75}{16} = 0.984375 \\
\Rightarrow \left(\frac{1}{2}\right)^m = 1 - 0.984375 = 0.015625 \\
\]
4. **Solve for \( m \):**
\[
\left(\frac{1}{2}\right)^m = \frac{1}{64} \\
\Rightarrow 2^m = 64 \\
\Rightarrow m = 6
\]
### **Answer:**
The value of \( m \) is **6**.
---
## **L.5 What is the least value of \( p \) for which the series \( \sum_{k=1}^{p} \frac{1}{16}(2)^{k-2} >31 \) ?**
### **Solution:**
1. **Rewrite the general term:**
\[
\frac{1}{16} \times 2^{k-2} = \frac{2^{k-2}}{16} = \frac{2^{k}}{64} = \frac{1}{64} \times 2^k
\]
However, it's more straightforward to treat this as a geometric series:
- First term (\( a_1 \)): For \( k = 1 \), \( \frac{1}{16} \times 2^{-1} = \frac{1}{32} \)
- Common ratio (\( r \)): \( 2 \)
2. **Use the sum formula for a geometric series:**
\[
S_p = a_1 \times \frac{r^p - 1}{r - 1} = \frac{1}{32} \times \frac{2^p - 1}{1} = \frac{2^p - 1}{32}
\]
3. **Set the sum greater than 31 and solve for \( p \):**
\[
\frac{2^p - 1}{32} > 31 \\
\Rightarrow 2^p - 1 > 992 \\
\Rightarrow 2^p > 993
\]
4. **Find the smallest integer \( p \) such that \( 2^p > 993 \):**
\[
2^{9} = 512 < 993 \\
2^{10} = 1024 > 993 \\
\]
Thus, \( p = 10 \)
### **Answer:**
The least value of \( p \) is **10**.
---
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution