Question
upstudy study bank question image url

EXEHCRCE 1 posints \( A(3.8) \), B \( (-6,4) \) nt \( C(a,-7) \) 1. Calenier a pour que le linnghe Afri wit rockingte ewn 06 3. Soit. \( P \) le symetrigue de B par mopputt a M G. Geluler lea coordonnees de \( D \) 4. Quethe est In Hature du quandrlatóre ADCD? On justiflera la réponce sama effuct wer le moindre calcal 5. Calculer l'aire du quarinilatere \( A B C D \) ot win perimetere (on donnera ce resist sout bis forme \( a \sqrt{b}, a \) ef bentiers. b le plus petit. possible) 6. a) Développer, réduire et ordonner \( (z-6)(4 z+19) \).

Ask by Chan Little. in Togo
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

- \( a = -30.75 \) - Coordinates of \( D = (3, 8) \) - Area of quadrilateral \( ABCD = 0 \) - Perimeter of quadrilateral \( ABCD = \frac{15\sqrt{97}}{2} \) - Expanded form of \( (z-6)(4z+19) = 4z^2 - 5z - 114 \)

Solution

Let's break down the problem step by step. ### 1. Find \( a \) such that the line \( AB \) is parallel to the line \( AC \). **Known Points:** - \( A(3, 8) \) - \( B(-6, 4) \) - \( C(a, -7) \) **Step 1: Calculate the slope of line \( AB \).** The slope \( m_{AB} \) is given by the formula: \[ m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 8}{-6 - 3} = \frac{-4}{-9} = \frac{4}{9} \] **Step 2: Calculate the slope of line \( AC \).** The slope \( m_{AC} \) is given by: \[ m_{AC} = \frac{-7 - 8}{a - 3} = \frac{-15}{a - 3} \] **Step 3: Set the slopes equal for parallel lines.** Since \( AB \) is parallel to \( AC \): \[ \frac{4}{9} = \frac{-15}{a - 3} \] **Step 4: Cross-multiply and solve for \( a \).** \[ 4(a - 3) = -135 \] \[ 4a - 12 = -135 \] \[ 4a = -123 \] \[ a = -\frac{123}{4} = -30.75 \] ### 2. Find the coordinates of point \( D \), the symmetric of \( B \) with respect to point \( M \). **Step 1: Find the midpoint \( M \) of segment \( AB \).** The coordinates of \( M \) are given by: \[ M\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right) = M\left(\frac{3 + (-6)}{2}, \frac{8 + 4}{2}\right) = M\left(-\frac{3}{2}, 6\right) \] **Step 2: Find the coordinates of point \( D \).** The coordinates of \( D \) can be found using the midpoint formula: \[ M = \left(\frac{x_B + x_D}{2}, \frac{y_B + y_D}{2}\right) \] Setting up the equations: \[ -\frac{3}{2} = \frac{-6 + x_D}{2} \quad \text{and} \quad 6 = \frac{4 + y_D}{2} \] **Solving for \( x_D \) and \( y_D \):** 1. For \( x_D \): \[ -\frac{3}{2} = \frac{-6 + x_D}{2} \implies -3 = -6 + x_D \implies x_D = 3 \] 2. For \( y_D \): \[ 6 = \frac{4 + y_D}{2} \implies 12 = 4 + y_D \implies y_D = 8 \] Thus, \( D(3, 8) \). ### 3. Determine the nature of quadrilateral \( ABCD \). **Step 1: Check if \( A, B, C, D \) are vertices of a parallelogram.** To check if \( ABCD \) is a parallelogram, we can check if the midpoints of the diagonals \( AC \) and \( BD \) are the same. **Midpoint of \( AC \):** \[ M_{AC} = \left(\frac{3 + a}{2}, \frac{8 + (-7)}{2}\right) = \left(\frac{3 + a}{2}, \frac{1}{2}\right) \] **Midpoint of \( BD \):** \[ M_{BD} = \left(\frac{-6 + 3}{2}, \frac{4 + 8}{2}\right) = \left(-\frac{3}{2}, 6\right) \] Since the midpoints are not equal, \( ABCD \) is not a parallelogram. ### 4. Calculate the area of quadrilateral \( ABCD \) and its perimeter. **Step 1: Use the shoelace formula for area.** The area \( A \) of quadrilateral \( ABCD \) can be calculated using the formula: \[ A = \frac{1}{2} \left| x_1y_2 + x_2y_3 + x_3y_4 + x_4y_1 - (y_1x_2 + y_2x_3 + y_3x_4 + y_4x_1) \right| \] Substituting the coordinates: - \( A(3, 8) \) - \( B(-6, 4) \) - \( C(-30.75, -7) \) - \( D(3, 8) \) Calculating the area: \[ A = \frac{1}{2} \left| 3 \cdot 4 + (-6) \cdot (-7) + (-30.75) \cdot 8 + 3 \cdot 8 - (8 \cdot (-6) + 4 \cdot (-30.75) + (-7) \cdot 3 + 8 \cdot 3) \right| \] **Step 2: Calculate the perimeter.** The perimeter \( P \) is the sum of the lengths of the sides: \[ P = AB + BC + CD + DA \] Using the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] ### 5. Develop, reduce, and order \( (z-6)(4z+19) \). **Step 1: Expand the expression.** \[ (z - 6)(4z + 19) = z \cdot 4z + z \cdot 19 - 6 \cdot 4z - 6 \cdot 19 \] \[ = 4z^2 + 19z - 24z - 114 \] \[ = 4z^2 - 5z - 114 \] Now, let's calculate the area and perimeter of quadrilateral \( ABCD \) and provide the final results. ### Final Calculations I will now calculate the area and perimeter using the shoelace formula and distance formula. Calculate the value by following steps: - step0: Calculate: \(3\times 4+\left(-6\right)\left(-7\right)+\left(-30\right)\) - step1: Remove the parentheses: \(3\times 4-6\left(-7\right)-30\) - step2: Multiply the numbers: \(12-6\left(-7\right)-30\) - step3: Multiply the numbers: \(12+42-30\) - step4: Calculate: \(24\) Calculate or simplify the expression \( (3*4 + (-6)*(-7) + (-30.75)*8 + 3*8) - (8*(-6) + 4*(-30.75) + (-7)*3 + 8*3) \). Calculate the value by following steps: - step0: Calculate: \(\left(3\times 4+\left(-6\right)\left(-7\right)+\left(-30.75\right)\times 8+3\times 8\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\) - step1: Remove the parentheses: \(\left(3\times 4-6\left(-7\right)-30.75\times 8+3\times 8\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\) - step2: Multiply the numbers: \(\left(12-6\left(-7\right)-30.75\times 8+3\times 8\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\) - step3: Multiply the numbers: \(\left(12+42-30.75\times 8+3\times 8\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\) - step4: Multiply the numbers: \(\left(12+42-246+3\times 8\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\) - step5: Multiply the numbers: \(\left(12+42-246+24\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\) - step6: Calculate: \(\left(-168\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\) - step7: Remove the parentheses: \(-168-\left(8\left(-6\right)+4\left(-30.75\right)-7\times 3+8\times 3\right)\) - step8: Multiply the numbers: \(-168-\left(-48+4\left(-30.75\right)-7\times 3+8\times 3\right)\) - step9: Multiply the numbers: \(-168-\left(-48-123-7\times 3+8\times 3\right)\) - step10: Multiply the numbers: \(-168-\left(-48-123-21+8\times 3\right)\) - step11: Multiply the numbers: \(-168-\left(-48-123-21+24\right)\) - step12: Calculate: \(-168-\left(-168\right)\) - step13: Remove the parentheses: \(-168+168\) - step14: Add the numbers: \(0\) Calculate or simplify the expression \( \sqrt((3 - (-6))^2 + (8 - 4)^2) + \sqrt((-6 - (-30.75))^2 + (4 - (-7))^2) + \sqrt((-30.75 - 3)^2 + (-7 - 8)^2) + \sqrt((3 - 3)^2 + (8 - 8)^2) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\left(3-\left(-6\right)\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6-\left(-30.75\right)\right)^{2}+\left(4-\left(-7\right)\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{\left(3-3\right)^{2}+\left(8-8\right)^{2}}\) - step1: Subtract the terms: \(\sqrt{\left(3-\left(-6\right)\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6-\left(-30.75\right)\right)^{2}+\left(4-\left(-7\right)\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{\left(3-3\right)^{2}+0^{2}}\) - step2: Subtract the terms: \(\sqrt{\left(3-\left(-6\right)\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6-\left(-30.75\right)\right)^{2}+\left(4-\left(-7\right)\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step3: Remove the parentheses: \(\sqrt{\left(3-\left(-6\right)\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6-\left(-30.75\right)\right)^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step4: Remove the parentheses: \(\sqrt{\left(3-\left(-6\right)\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6+30.75\right)^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step5: Remove the parentheses: \(\sqrt{\left(3+6\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6+30.75\right)^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step6: Add the numbers: \(\sqrt{9^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6+30.75\right)^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step7: Subtract the numbers: \(\sqrt{9^{2}+4^{2}}+\sqrt{\left(-6+30.75\right)^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step8: Add the numbers: \(\sqrt{9^{2}+4^{2}}+\sqrt{24.75^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step9: Add the numbers: \(\sqrt{9^{2}+4^{2}}+\sqrt{24.75^{2}+11^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step10: Subtract the numbers: \(\sqrt{9^{2}+4^{2}}+\sqrt{24.75^{2}+11^{2}}+\sqrt{\left(-33.75\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step11: Subtract the numbers: \(\sqrt{9^{2}+4^{2}}+\sqrt{24.75^{2}+11^{2}}+\sqrt{\left(-33.75\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step12: Add the numbers: \(\sqrt{97}+\sqrt{24.75^{2}+11^{2}}+\sqrt{\left(-33.75\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step13: Convert the expressions: \(\sqrt{97}+\sqrt{\left(\frac{99}{4}\right)^{2}+11^{2}}+\sqrt{\left(-33.75\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step14: Add the numbers: \(\sqrt{97}+\sqrt{\frac{11737}{16}}+\sqrt{\left(-33.75\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step15: Simplify the root: \(\sqrt{97}+\frac{11\sqrt{97}}{4}+\sqrt{\left(-33.75\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step16: Convert the expressions: \(\sqrt{97}+\frac{11\sqrt{97}}{4}+\sqrt{\left(-\frac{135}{4}\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\) - step17: Add the numbers: \(\sqrt{97}+\frac{11\sqrt{97}}{4}+\sqrt{\frac{21825}{16}}+\sqrt{0^{2}+0^{2}}\) - step18: Simplify the root: \(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}+\sqrt{0^{2}+0^{2}}\) - step19: Calculate: \(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}+\sqrt{0+0^{2}}\) - step20: Calculate: \(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}+\sqrt{0+0}\) - step21: Remove 0: \(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}+\sqrt{0}\) - step22: Simplify the root: \(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}+0\) - step23: Remove 0: \(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}\) - step24: Reduce fractions to a common denominator: \(\frac{\sqrt{97}\times 4}{4}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}\) - step25: Transform the expression: \(\frac{\sqrt{97}\times 4+11\sqrt{97}+15\sqrt{97}}{4}\) - step26: Reorder the terms: \(\frac{4\sqrt{97}+11\sqrt{97}+15\sqrt{97}}{4}\) - step27: Add the numbers: \(\frac{30\sqrt{97}}{4}\) - step28: Reduce the fraction: \(\frac{15\sqrt{97}}{2}\) ### Summary of Calculations 1. **Finding \( a \)**: - We found \( a = -30.75 \) such that line \( AB \) is parallel to line \( AC \). 2. **Coordinates of Point \( D \)**: - The coordinates of point \( D \) are \( D(3, 8) \). 3. **Nature of Quadrilateral \( ABCD \)**: - The quadrilateral \( ABCD \) is not a parallelogram since the midpoints of the diagonals \( AC \) and \( BD \) are not equal. 4. **Area of Quadrilateral \( ABCD \)**: - The area calculated using the shoelace formula is \( 0 \). This indicates that points \( A, B, C, D \) are collinear. 5. **Perimeter of Quadrilateral \( ABCD \)**: - The perimeter is calculated as \( \frac{15\sqrt{97}}{2} \). 6. **Expansion of \( (z-6)(4z+19) \)**: - The expanded form is \( 4z^2 - 5z - 114 \). ### Final Results - \( a = -30.75 \) - Coordinates of \( D = (3, 8) \) - Area of quadrilateral \( ABCD = 0 \) - Perimeter of quadrilateral \( ABCD = \frac{15\sqrt{97}}{2} \) - Expanded form of \( (z-6)(4z+19) = 4z^2 - 5z - 114 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Pour que le segment \( AB \) soit de longueur 6, nous utiliserons la formule de la distance entre deux points : \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Ici, avec \( A(3, 8) \) et \( B(-6, 4) \), on sait que \( d \) doit égaler 6. En remplaçant les coordonnées et en résolvant l'équation, on peut trouver la valeur de \( a \) à partir du point \( C(a, -7) \). Pour le point \( P \), le symétrique de \( B \) par rapport à \( M \) (le point milieu entre \( A \) et \( D \)), on pourra utiliser les coordonnées de \( B \) et les coordonnées de \( M \) pour trouver les coordonnées de \( P \). Cela signifie que l’on doit équilibrer les coordonnées des deux points de manière à ce que \( M \) reste au centre.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy