Answer
- \( a = -30.75 \)
- Coordinates of \( D = (3, 8) \)
- Area of quadrilateral \( ABCD = 0 \)
- Perimeter of quadrilateral \( ABCD = \frac{15\sqrt{97}}{2} \)
- Expanded form of \( (z-6)(4z+19) = 4z^2 - 5z - 114 \)
Solution
Let's break down the problem step by step.
### 1. Find \( a \) such that the line \( AB \) is parallel to the line \( AC \).
**Known Points:**
- \( A(3, 8) \)
- \( B(-6, 4) \)
- \( C(a, -7) \)
**Step 1: Calculate the slope of line \( AB \).**
The slope \( m_{AB} \) is given by the formula:
\[
m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 8}{-6 - 3} = \frac{-4}{-9} = \frac{4}{9}
\]
**Step 2: Calculate the slope of line \( AC \).**
The slope \( m_{AC} \) is given by:
\[
m_{AC} = \frac{-7 - 8}{a - 3} = \frac{-15}{a - 3}
\]
**Step 3: Set the slopes equal for parallel lines.**
Since \( AB \) is parallel to \( AC \):
\[
\frac{4}{9} = \frac{-15}{a - 3}
\]
**Step 4: Cross-multiply and solve for \( a \).**
\[
4(a - 3) = -135
\]
\[
4a - 12 = -135
\]
\[
4a = -123
\]
\[
a = -\frac{123}{4} = -30.75
\]
### 2. Find the coordinates of point \( D \), the symmetric of \( B \) with respect to point \( M \).
**Step 1: Find the midpoint \( M \) of segment \( AB \).**
The coordinates of \( M \) are given by:
\[
M\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right) = M\left(\frac{3 + (-6)}{2}, \frac{8 + 4}{2}\right) = M\left(-\frac{3}{2}, 6\right)
\]
**Step 2: Find the coordinates of point \( D \).**
The coordinates of \( D \) can be found using the midpoint formula:
\[
M = \left(\frac{x_B + x_D}{2}, \frac{y_B + y_D}{2}\right)
\]
Setting up the equations:
\[
-\frac{3}{2} = \frac{-6 + x_D}{2} \quad \text{and} \quad 6 = \frac{4 + y_D}{2}
\]
**Solving for \( x_D \) and \( y_D \):**
1. For \( x_D \):
\[
-\frac{3}{2} = \frac{-6 + x_D}{2} \implies -3 = -6 + x_D \implies x_D = 3
\]
2. For \( y_D \):
\[
6 = \frac{4 + y_D}{2} \implies 12 = 4 + y_D \implies y_D = 8
\]
Thus, \( D(3, 8) \).
### 3. Determine the nature of quadrilateral \( ABCD \).
**Step 1: Check if \( A, B, C, D \) are vertices of a parallelogram.**
To check if \( ABCD \) is a parallelogram, we can check if the midpoints of the diagonals \( AC \) and \( BD \) are the same.
**Midpoint of \( AC \):**
\[
M_{AC} = \left(\frac{3 + a}{2}, \frac{8 + (-7)}{2}\right) = \left(\frac{3 + a}{2}, \frac{1}{2}\right)
\]
**Midpoint of \( BD \):**
\[
M_{BD} = \left(\frac{-6 + 3}{2}, \frac{4 + 8}{2}\right) = \left(-\frac{3}{2}, 6\right)
\]
Since the midpoints are not equal, \( ABCD \) is not a parallelogram.
### 4. Calculate the area of quadrilateral \( ABCD \) and its perimeter.
**Step 1: Use the shoelace formula for area.**
The area \( A \) of quadrilateral \( ABCD \) can be calculated using the formula:
\[
A = \frac{1}{2} \left| x_1y_2 + x_2y_3 + x_3y_4 + x_4y_1 - (y_1x_2 + y_2x_3 + y_3x_4 + y_4x_1) \right|
\]
Substituting the coordinates:
- \( A(3, 8) \)
- \( B(-6, 4) \)
- \( C(-30.75, -7) \)
- \( D(3, 8) \)
Calculating the area:
\[
A = \frac{1}{2} \left| 3 \cdot 4 + (-6) \cdot (-7) + (-30.75) \cdot 8 + 3 \cdot 8 - (8 \cdot (-6) + 4 \cdot (-30.75) + (-7) \cdot 3 + 8 \cdot 3) \right|
\]
**Step 2: Calculate the perimeter.**
The perimeter \( P \) is the sum of the lengths of the sides:
\[
P = AB + BC + CD + DA
\]
Using the distance formula:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
### 5. Develop, reduce, and order \( (z-6)(4z+19) \).
**Step 1: Expand the expression.**
\[
(z - 6)(4z + 19) = z \cdot 4z + z \cdot 19 - 6 \cdot 4z - 6 \cdot 19
\]
\[
= 4z^2 + 19z - 24z - 114
\]
\[
= 4z^2 - 5z - 114
\]
Now, let's calculate the area and perimeter of quadrilateral \( ABCD \) and provide the final results.
### Final Calculations
I will now calculate the area and perimeter using the shoelace formula and distance formula.
Calculate the value by following steps:
- step0: Calculate:
\(3\times 4+\left(-6\right)\left(-7\right)+\left(-30\right)\)
- step1: Remove the parentheses:
\(3\times 4-6\left(-7\right)-30\)
- step2: Multiply the numbers:
\(12-6\left(-7\right)-30\)
- step3: Multiply the numbers:
\(12+42-30\)
- step4: Calculate:
\(24\)
Calculate or simplify the expression \( (3*4 + (-6)*(-7) + (-30.75)*8 + 3*8) - (8*(-6) + 4*(-30.75) + (-7)*3 + 8*3) \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(3\times 4+\left(-6\right)\left(-7\right)+\left(-30.75\right)\times 8+3\times 8\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\)
- step1: Remove the parentheses:
\(\left(3\times 4-6\left(-7\right)-30.75\times 8+3\times 8\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\)
- step2: Multiply the numbers:
\(\left(12-6\left(-7\right)-30.75\times 8+3\times 8\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\)
- step3: Multiply the numbers:
\(\left(12+42-30.75\times 8+3\times 8\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\)
- step4: Multiply the numbers:
\(\left(12+42-246+3\times 8\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\)
- step5: Multiply the numbers:
\(\left(12+42-246+24\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\)
- step6: Calculate:
\(\left(-168\right)-\left(8\left(-6\right)+4\left(-30.75\right)+\left(-7\right)\times 3+8\times 3\right)\)
- step7: Remove the parentheses:
\(-168-\left(8\left(-6\right)+4\left(-30.75\right)-7\times 3+8\times 3\right)\)
- step8: Multiply the numbers:
\(-168-\left(-48+4\left(-30.75\right)-7\times 3+8\times 3\right)\)
- step9: Multiply the numbers:
\(-168-\left(-48-123-7\times 3+8\times 3\right)\)
- step10: Multiply the numbers:
\(-168-\left(-48-123-21+8\times 3\right)\)
- step11: Multiply the numbers:
\(-168-\left(-48-123-21+24\right)\)
- step12: Calculate:
\(-168-\left(-168\right)\)
- step13: Remove the parentheses:
\(-168+168\)
- step14: Add the numbers:
\(0\)
Calculate or simplify the expression \( \sqrt((3 - (-6))^2 + (8 - 4)^2) + \sqrt((-6 - (-30.75))^2 + (4 - (-7))^2) + \sqrt((-30.75 - 3)^2 + (-7 - 8)^2) + \sqrt((3 - 3)^2 + (8 - 8)^2) \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{\left(3-\left(-6\right)\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6-\left(-30.75\right)\right)^{2}+\left(4-\left(-7\right)\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{\left(3-3\right)^{2}+\left(8-8\right)^{2}}\)
- step1: Subtract the terms:
\(\sqrt{\left(3-\left(-6\right)\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6-\left(-30.75\right)\right)^{2}+\left(4-\left(-7\right)\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{\left(3-3\right)^{2}+0^{2}}\)
- step2: Subtract the terms:
\(\sqrt{\left(3-\left(-6\right)\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6-\left(-30.75\right)\right)^{2}+\left(4-\left(-7\right)\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step3: Remove the parentheses:
\(\sqrt{\left(3-\left(-6\right)\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6-\left(-30.75\right)\right)^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step4: Remove the parentheses:
\(\sqrt{\left(3-\left(-6\right)\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6+30.75\right)^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step5: Remove the parentheses:
\(\sqrt{\left(3+6\right)^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6+30.75\right)^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step6: Add the numbers:
\(\sqrt{9^{2}+\left(8-4\right)^{2}}+\sqrt{\left(-6+30.75\right)^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step7: Subtract the numbers:
\(\sqrt{9^{2}+4^{2}}+\sqrt{\left(-6+30.75\right)^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step8: Add the numbers:
\(\sqrt{9^{2}+4^{2}}+\sqrt{24.75^{2}+\left(4+7\right)^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step9: Add the numbers:
\(\sqrt{9^{2}+4^{2}}+\sqrt{24.75^{2}+11^{2}}+\sqrt{\left(-30.75-3\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step10: Subtract the numbers:
\(\sqrt{9^{2}+4^{2}}+\sqrt{24.75^{2}+11^{2}}+\sqrt{\left(-33.75\right)^{2}+\left(-7-8\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step11: Subtract the numbers:
\(\sqrt{9^{2}+4^{2}}+\sqrt{24.75^{2}+11^{2}}+\sqrt{\left(-33.75\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step12: Add the numbers:
\(\sqrt{97}+\sqrt{24.75^{2}+11^{2}}+\sqrt{\left(-33.75\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step13: Convert the expressions:
\(\sqrt{97}+\sqrt{\left(\frac{99}{4}\right)^{2}+11^{2}}+\sqrt{\left(-33.75\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step14: Add the numbers:
\(\sqrt{97}+\sqrt{\frac{11737}{16}}+\sqrt{\left(-33.75\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step15: Simplify the root:
\(\sqrt{97}+\frac{11\sqrt{97}}{4}+\sqrt{\left(-33.75\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step16: Convert the expressions:
\(\sqrt{97}+\frac{11\sqrt{97}}{4}+\sqrt{\left(-\frac{135}{4}\right)^{2}+\left(-15\right)^{2}}+\sqrt{0^{2}+0^{2}}\)
- step17: Add the numbers:
\(\sqrt{97}+\frac{11\sqrt{97}}{4}+\sqrt{\frac{21825}{16}}+\sqrt{0^{2}+0^{2}}\)
- step18: Simplify the root:
\(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}+\sqrt{0^{2}+0^{2}}\)
- step19: Calculate:
\(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}+\sqrt{0+0^{2}}\)
- step20: Calculate:
\(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}+\sqrt{0+0}\)
- step21: Remove 0:
\(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}+\sqrt{0}\)
- step22: Simplify the root:
\(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}+0\)
- step23: Remove 0:
\(\sqrt{97}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}\)
- step24: Reduce fractions to a common denominator:
\(\frac{\sqrt{97}\times 4}{4}+\frac{11\sqrt{97}}{4}+\frac{15\sqrt{97}}{4}\)
- step25: Transform the expression:
\(\frac{\sqrt{97}\times 4+11\sqrt{97}+15\sqrt{97}}{4}\)
- step26: Reorder the terms:
\(\frac{4\sqrt{97}+11\sqrt{97}+15\sqrt{97}}{4}\)
- step27: Add the numbers:
\(\frac{30\sqrt{97}}{4}\)
- step28: Reduce the fraction:
\(\frac{15\sqrt{97}}{2}\)
### Summary of Calculations
1. **Finding \( a \)**:
- We found \( a = -30.75 \) such that line \( AB \) is parallel to line \( AC \).
2. **Coordinates of Point \( D \)**:
- The coordinates of point \( D \) are \( D(3, 8) \).
3. **Nature of Quadrilateral \( ABCD \)**:
- The quadrilateral \( ABCD \) is not a parallelogram since the midpoints of the diagonals \( AC \) and \( BD \) are not equal.
4. **Area of Quadrilateral \( ABCD \)**:
- The area calculated using the shoelace formula is \( 0 \). This indicates that points \( A, B, C, D \) are collinear.
5. **Perimeter of Quadrilateral \( ABCD \)**:
- The perimeter is calculated as \( \frac{15\sqrt{97}}{2} \).
6. **Expansion of \( (z-6)(4z+19) \)**:
- The expanded form is \( 4z^2 - 5z - 114 \).
### Final Results
- \( a = -30.75 \)
- Coordinates of \( D = (3, 8) \)
- Area of quadrilateral \( ABCD = 0 \)
- Perimeter of quadrilateral \( ABCD = \frac{15\sqrt{97}}{2} \)
- Expanded form of \( (z-6)(4z+19) = 4z^2 - 5z - 114 \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution