\( \frac{3}{10}-\frac{24}{25}.(\frac{5}{12}-\frac{5}{8}x)\frac{2}{6}x-1 \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
Let's simplify this expression step by step while keeping things clear and engaging! First, we need to deal with the fractions and the operations. Notice that the term \( \frac{2}{6} \) can be simplified to \( \frac{1}{3} \). Hence, we can rewrite the expression as: \[ \frac{3}{10} - \frac{24}{25} \left( \frac{5}{12} - \frac{5}{8}x \right) \cdot \frac{1}{3} x - 1 \] Now let's focus on the part inside the parentheses: \( \frac{5}{12} - \frac{5}{8}x \). We can find a common denominator here. The least common multiple of 12 and 8 is 24, allowing us to rewrite this as: \[ \frac{5}{12} = \frac{10}{24} \quad \text{and} \quad \frac{5}{8}x = \frac{15}{24}x \] So, we have: \[ \frac{10}{24} - \frac{15}{24}x = \frac{10 - 15x}{24} \] Next, substitute this back into our expression: \[ \frac{3}{10} - \frac{24}{25} \cdot \frac{10 - 15x}{24} \cdot \frac{1}{3} x - 1 \] The \( \frac{24}{24} \) cancels out, and we get: \[ \frac{3}{10} - \frac{24}{25} \cdot \frac{10 - 15x}{3} x - 1 \] Now let’s manage \( \frac{24}{25} \cdot \frac{1}{3} = \frac{8}{25} \): \[ \frac{3}{10} - \frac{8}{25} (10 - 15x)x - 1 \] Distributing \( -\frac{8}{25} \) yields: \[ \frac{3}{10} - \left( \frac{80}{25} x - \frac{120}{25}x^2 \right) - 1 \] This simplifies to: \[ \frac{3}{10} - 3.2x + 4.8x^2 - 1 \] Next, combine \( \frac{3}{10} \) and \( -1 \), remembering that \( -1 = -\frac{10}{10} \): \[ -\frac{10}{10} + \frac{3}{10} = -\frac{7}{10} \] Finally, our full simplified expression is: \[ 4.8x^2 - 3.2x - \frac{7}{10} \] And there you have it! The expression simplified like a pro.