Question
upstudy study bank question image url

\( \begin{array}{ll}\text { (1) } \int\left(x^{2}+3 x-2\right) d x & \text { (4) } \int \frac{d x}{(3 x+5)^{4}} \\ \text { (5) } \int \frac{d x}{(x+1)^{3}} & \text { (5) } \int x e^{-2 x} d x \\ \text { (3) } \int x(3 x-5)^{4} d x & \text { (6) } \int x^{2} e^{x} d x \\ \text { (7) } \int x^{2} \log x d x & \text { (8) } \int 4^{x} e^{2 x} d x\end{array} \)

Ask by Reese Young. in India
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified solutions for the integrals: 1. \( \int (x^{2} + 3x - 2) \, dx = \frac{x^{3}}{3} + \frac{3x^{2}}{2} - 2x + C \) 2. \( \int \frac{1}{(3x + 5)^{4}} \, dx = -\frac{1}{9(3x + 5)^{3}} + C \) 3. \( \int \frac{1}{(x + 1)^{3}} \, dx = -\frac{1}{2(x + 1)^{2}} + C \) 4. \( \int x e^{-2x} \, dx = -\frac{x}{2e^{2x}} - \frac{1}{4e^{2x}} + C \) 5. \( \int x(3x - 5)^{4} \, dx = \frac{(3x - 5)^{6}}{54} + \frac{243x^{5} - 2025x^{4} + 6750x^{3} - 11250x^{2} + 9375x - 3125}{9} + C \) 6. \( \int x^{2} e^{x} \, dx = x^{2}e^{x} - 2xe^{x} + 2e^{x} + C \) 7. \( \int x^{2} \log x \, dx = \frac{1}{3}x^{3}\log_{10}(x) - \frac{1}{9\ln(10)}x^{3} + C \) 8. \( \int 4^{x} e^{2x} \, dx = \frac{(4e^{2})^{x}}{2\ln(2e)} + C \) These are the simplified indefinite integrals for each of the given expressions.

Solution

Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \left(x^{2}+3x-2\right) dx\) - step1: Use properties of integrals: \(\int x^{2} dx+\int 3x dx+\int -2 dx\) - step2: Evaluate the integral: \(\frac{x^{3}}{3}+\int 3x dx+\int -2 dx\) - step3: Evaluate the integral: \(\frac{x^{3}}{3}+\frac{3x^{2}}{2}+\int -2 dx\) - step4: Evaluate the integral: \(\frac{x^{3}}{3}+\frac{3x^{2}}{2}-2x\) - step5: Add the constant of integral C: \(\frac{x^{3}}{3}+\frac{3x^{2}}{2}-2x + C, C \in \mathbb{R}\) Calculate the integral \( \frac{1}{(3 x+5)^{4}} \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{1}{\left(3x+5\right)^{4}} dx\) - step1: Use the substitution \(dx=\frac{1}{3} dt\) to transform the integral\(:\) \(\int \frac{1}{\left(3x+5\right)^{4}}\times \frac{1}{3} dt\) - step2: Simplify: \(\int \frac{1}{3\left(3x+5\right)^{4}} dt\) - step3: Use the substitution \(t=3x+5\) to transform the integral\(:\) \(\int \frac{1}{3t^{4}} dt\) - step4: Rewrite the expression: \(\int \frac{1}{3}\times \frac{1}{t^{4}} dt\) - step5: Use properties of integrals: \(\frac{1}{3}\times \int \frac{1}{t^{4}} dt\) - step6: Evaluate the integral: \(\frac{1}{3}\times \frac{t^{-4+1}}{-4+1}\) - step7: Simplify: \(\frac{1}{3}\times \frac{t^{-3}}{-3}\) - step8: Multiply the terms: \(-\frac{1}{3}\times \frac{t^{-3}}{3}\) - step9: Multiply the terms: \(-\frac{t^{-3}}{3\times 3}\) - step10: Multiply the terms: \(-\frac{t^{-3}}{9}\) - step11: Simplify: \(-\frac{1}{9t^{3}}\) - step12: Substitute back: \(-\frac{1}{9\left(3x+5\right)^{3}}\) - step13: Add the constant of integral C: \(-\frac{1}{9\left(3x+5\right)^{3}} + C, C \in \mathbb{R}\) Calculate the integral \( \frac{1}{(x+1)^{3}} \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{1}{\left(x+1\right)^{3}} dx\) - step1: Use the substitution \(dx=1 dt\) to transform the integral\(:\) \(\int \frac{1}{\left(x+1\right)^{3}}\times 1 dt\) - step2: Simplify: \(\int \frac{1}{\left(x+1\right)^{3}} dt\) - step3: Use the substitution \(t=x+1\) to transform the integral\(:\) \(\int \frac{1}{t^{3}} dt\) - step4: Evaluate the integral: \(\frac{t^{-3+1}}{-3+1}\) - step5: Add the numbers: \(\frac{t^{-2}}{-3+1}\) - step6: Add the numbers: \(\frac{t^{-2}}{-2}\) - step7: Substitute back: \(\frac{\left(x+1\right)^{-2}}{-2}\) - step8: Simplify: \(\frac{\frac{1}{\left(x+1\right)^{2}}}{-2}\) - step9: Add the constant of integral C: \(\frac{\frac{1}{\left(x+1\right)^{2}}}{-2} + C, C \in \mathbb{R}\) Calculate the integral \( x^{2} e^{x} \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int x^{2}e^{x} dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=x^{2}\\&dv=e^{x}dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=2xdx\\&dv=e^{x}dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=2xdx\\&v=e^{x}\end{align}\) - step4: Substitute the values into formula: \(x^{2}e^{x}-\int 2xe^{x} dx\) - step5: Evaluate the integral: \(x^{2}e^{x}-2xe^{x}+2e^{x}\) - step6: Add the constant of integral C: \(x^{2}e^{x}-2xe^{x}+2e^{x} + C, C \in \mathbb{R}\) Calculate the integral \( 4^{x} e^{2 x} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int 4^{x}e^{2x} dx\) - step1: Multiply the terms: \(\int \left(4e^{2}\right)^{x} dx\) - step2: Evaluate the integral: \(\frac{\left(4e^{2}\right)^{x}}{\ln{\left(4e^{2}\right)}}\) - step3: Simplify: \(\frac{\left(4e^{2}\right)^{x}}{2\ln{\left(2e\right)}}\) - step4: Add the constant of integral C: \(\frac{\left(4e^{2}\right)^{x}}{2\ln{\left(2e\right)}} + C, C \in \mathbb{R}\) Calculate the integral \( x e^{-2 x} \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int xe^{-2x} dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=x\\&dv=e^{-2x}dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=dx\\&dv=e^{-2x}dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=dx\\&v=-\frac{1}{2e^{2x}}\end{align}\) - step4: Substitute the values into formula: \(x\left(-\frac{1}{2e^{2x}}\right)-\int 1\times \left(-\frac{1}{2e^{2x}}\right) dx\) - step5: Calculate: \(-\frac{x}{2e^{2x}}-\int -\frac{1}{2e^{2x}} dx\) - step6: Use properties of integrals: \(-\frac{x}{2e^{2x}}+\int \frac{1}{2e^{2x}} dx\) - step7: Evaluate the integral: \(-\frac{x}{2e^{2x}}-\frac{1}{4e^{2x}}\) - step8: Add the constant of integral C: \(-\frac{x}{2e^{2x}}-\frac{1}{4e^{2x}} + C, C \in \mathbb{R}\) Calculate the integral \( x^{2} \log x \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int x^{2}\log_{10}{\left(x\right)} dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=\log_{10}{\left(x\right)}\\&dv=x^{2}dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=\frac{1}{\ln{\left(10\right)}\times x}dx\\&dv=x^{2}dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=\frac{1}{\ln{\left(10\right)}\times x}dx\\&v=\frac{x^{3}}{3}\end{align}\) - step4: Substitute the values into formula: \(\log_{10}{\left(x\right)}\times \frac{x^{3}}{3}-\int \frac{1}{\ln{\left(10\right)}\times x}\times \frac{x^{3}}{3} dx\) - step5: Calculate: \(\frac{x^{3}\log_{10}{\left(x\right)}}{3}-\int \frac{x^{2}}{3\ln{\left(10\right)}} dx\) - step6: Evaluate the integral: \(\frac{x^{3}\log_{10}{\left(x\right)}}{3}-\frac{x^{3}}{9\ln{\left(10\right)}}\) - step7: Simplify the expression: \(\frac{1}{3}x^{3}\log_{10}{\left(x\right)}-\frac{x^{3}}{9\ln{\left(10\right)}}\) - step8: Simplify the expression: \(\frac{1}{3}x^{3}\log_{10}{\left(x\right)}-\frac{1}{9\ln{\left(10\right)}}\times x^{3}\) - step9: Add the constant of integral C: \(\frac{1}{3}x^{3}\log_{10}{\left(x\right)}-\frac{1}{9\ln{\left(10\right)}}\times x^{3} + C, C \in \mathbb{R}\) Calculate the integral \( x(3 x-5)^{4} \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int x\left(3x-5\right)^{4} dx\) - step1: Use the substitution \(dx=\frac{1}{3} dt\) to transform the integral\(:\) \(\int x\left(3x-5\right)^{4}\times \frac{1}{3} dt\) - step2: Simplify: \(\int \frac{\left(3x-5\right)^{4}}{3}x dt\) - step3: Use the substitution \(t=3x-5\) to transform the integral\(:\) \(\int \frac{t^{4}}{3}\left(\frac{1}{3}t+\frac{5}{3}\right) dt\) - step4: Simplify: \(\int \frac{\frac{1}{3}t^{5}+\frac{5}{3}t^{4}}{3} dt\) - step5: Rewrite the expression: \(\int \frac{1}{3}\left(\frac{1}{3}t^{5}+\frac{5}{3}t^{4}\right) dt\) - step6: Use properties of integrals: \(\frac{1}{3}\times \int \left(\frac{1}{3}t^{5}+\frac{5}{3}t^{4}\right) dt\) - step7: Use properties of integrals: \(\frac{1}{3}\left(\int \frac{1}{3}t^{5} dt+\int \frac{5}{3}t^{4} dt\right)\) - step8: Calculate: \(\frac{1}{3}\times \int \frac{1}{3}t^{5} dt+\frac{1}{3}\times \int \frac{5}{3}t^{4} dt\) - step9: Evaluate the integral: \(\frac{t^{6}}{54}+\frac{1}{3}\times \int \frac{5}{3}t^{4} dt\) - step10: Evaluate the integral: \(\frac{t^{6}}{54}+\frac{t^{5}}{9}\) - step11: Substitute back: \(\frac{\left(3x-5\right)^{6}}{54}+\frac{\left(3x-5\right)^{5}}{9}\) - step12: Evaluate the power: \(\frac{\left(3x-5\right)^{6}}{54}+\frac{243x^{5}-2025x^{4}+6750x^{3}-11250x^{2}+9375x-3125}{9}\) - step13: Add the constant of integral C: \(\frac{\left(3x-5\right)^{6}}{54}+\frac{243x^{5}-2025x^{4}+6750x^{3}-11250x^{2}+9375x-3125}{9} + C, C \in \mathbb{R}\) Here are the solutions for the integrals provided: 1. **Integral of \(x^{2}+3x-2\)**: \[ \int (x^{2}+3x-2) \, dx = \frac{x^{3}}{3} + \frac{3x^{2}}{2} - 2x + C, \quad C \in \mathbb{R} \] 2. **Integral of \(\frac{1}{(3x+5)^{4}}\)**: \[ \int \frac{1}{(3x+5)^{4}} \, dx = -\frac{1}{9(3x+5)^{3}} + C, \quad C \in \mathbb{R} \] 3. **Integral of \(\frac{1}{(x+1)^{3}}\)**: \[ \int \frac{1}{(x+1)^{3}} \, dx = -\frac{1}{2(x+1)^{2}} + C, \quad C \in \mathbb{R} \] 4. **Integral of \(xe^{-2x}\)** (using integration by parts): \[ \int x e^{-2x} \, dx = -\frac{x}{2e^{2x}} - \frac{1}{4e^{2x}} + C, \quad C \in \mathbb{R} \] 5. **Integral of \(x(3x-5)^{4}\)**: \[ \int x(3x-5)^{4} \, dx = \frac{(3x-5)^{6}}{54} + \frac{243x^{5}-2025x^{4}+6750x^{3}-11250x^{2}+9375x-3125}{9} + C, \quad C \in \mathbb{R} \] 6. **Integral of \(x^{2}e^{x}\)** (using integration by parts): \[ \int x^{2} e^{x} \, dx = x^{2}e^{x} - 2xe^{x} + 2e^{x} + C, \quad C \in \mathbb{R} \] 7. **Integral of \(x^{2} \log x\)** (using integration by parts): \[ \int x^{2} \log x \, dx = \frac{1}{3}x^{3}\log_{10}(x) - \frac{1}{9\ln(10)}x^{3} + C, \quad C \in \mathbb{R} \] 8. **Integral of \(4^{x} e^{2x}\)**: \[ \int 4^{x} e^{2x} \, dx = \frac{(4e^{2})^{x}}{2\ln(2e)} + C, \quad C \in \mathbb{R} \] These results provide the indefinite integrals for each of the expressions given.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Integrating polynomials, such as in the first integral, involves applying the power rule, where you increase the exponent by one and divide by the new exponent. For example, \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\) (with \(C\) being the constant of integration). When dealing with polynomials combined with other functions, make sure to break it down and apply the rule accordingly for each term! When integrating functions like \(f(x) = \frac{1}{(3x+5)^4}\), substitution can be your best friend! Here, you can let \(u = 3x + 5\), which simplifies the integration process significantly. Remember to also compute \(du\) carefully, as it will help you rewrite the integral in a manageable form, allowing you to use the power rule effectively on the new variable!

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy