Question
upstudy study bank question image url

Practice Your skills Solve for \( n \) in each proportion. 1 \( \frac{3}{n}=\frac{2}{4} \) \( 2 \quad \frac{5}{7}=\frac{n}{14} \) \( 3 \quad \frac{n}{5}=\frac{16}{20} \) \( 4 \quad \frac{14}{8}=\frac{n}{20} \) \( 5 \quad \frac{3}{n}=\frac{27}{108} \) (6) \( 18: 12=n: 6 \) \( 7 \quad 30: 78=n: 13 \) \( 8 \quad n: 8=5: 10 \) 9. \( \quad 15: 2=n: 8 \) \( 10 \quad 40: 72=n: 9 \)

Ask by Black Erickson. in the United Arab Emirates
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the values of \( n \) for each proportion: 1. \( n = 6 \) 2. \( n = 10 \) 3. \( n = 4 \) 4. \( n = 35 \) 5. \( n = 12 \) 6. \( n = 9 \) 7. \( n = 5 \) 8. \( n = 4 \) 9. \( n = 60 \) 10. \( n = 5 \)

Solution

Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{15}{2}=\frac{n}{8}\) - step1: Swap the sides: \(\frac{n}{8}=\frac{15}{2}\) - step2: Multiply both sides of the equation by \(8:\) \(\frac{n}{8}\times 8=\frac{15}{2}\times 8\) - step3: Multiply the terms: \(n=\frac{15\times 8}{2}\) - step4: Evaluate: \(n=60\) Solve the equation \( 3/n=2/4 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{3}{n}=\frac{2}{4}\) - step1: Find the domain: \(\frac{3}{n}=\frac{2}{4},n\neq 0\) - step2: Reduce the fraction: \(\frac{3}{n}=\frac{1}{2}\) - step3: Rewrite the expression: \(n=3\times 2\) - step4: Evaluate: \(n=6\) - step5: Check if the solution is in the defined range: \(n=6,n\neq 0\) - step6: Find the intersection: \(n=6\) Solve the equation \( n/5=16/20 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{n}{5}=\frac{16}{20}\) - step1: Reduce the fraction: \(\frac{n}{5}=\frac{4}{5}\) - step2: Multiply both sides of the equation by \(5:\) \(\frac{n}{5}\times 5=\frac{4}{5}\times 5\) - step3: Multiply the terms: \(n=4\) Solve the equation \( 5/7=n/14 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{5}{7}=\frac{n}{14}\) - step1: Swap the sides: \(\frac{n}{14}=\frac{5}{7}\) - step2: Multiply both sides of the equation by \(14:\) \(\frac{n}{14}\times 14=\frac{5}{7}\times 14\) - step3: Multiply the terms: \(n=\frac{5\times 14}{7}\) - step4: Evaluate: \(n=10\) Solve the equation \( n/8=5/10 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{n}{8}=\frac{5}{10}\) - step1: Reduce the fraction: \(\frac{n}{8}=\frac{1}{2}\) - step2: Multiply both sides of the equation by \(8:\) \(\frac{n}{8}\times 8=\frac{1}{2}\times 8\) - step3: Multiply the terms: \(n=\frac{8}{2}\) - step4: Evaluate: \(n=4\) Solve the equation \( 40/72=n/9 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{40}{72}=\frac{n}{9}\) - step1: Reduce the fraction: \(\frac{5}{9}=\frac{n}{9}\) - step2: Swap the sides: \(\frac{n}{9}=\frac{5}{9}\) - step3: Multiply both sides of the equation by \(9:\) \(\frac{n}{9}\times 9=\frac{5}{9}\times 9\) - step4: Multiply the terms: \(n=5\) Solve the equation \( 14/8=n/20 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{14}{8}=\frac{n}{20}\) - step1: Reduce the fraction: \(\frac{7}{4}=\frac{n}{20}\) - step2: Swap the sides: \(\frac{n}{20}=\frac{7}{4}\) - step3: Multiply both sides of the equation by \(20:\) \(\frac{n}{20}\times 20=\frac{7}{4}\times 20\) - step4: Multiply the terms: \(n=\frac{7\times 20}{4}\) - step5: Evaluate: \(n=35\) Solve the equation \( 30/78=n/13 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{30}{78}=\frac{n}{13}\) - step1: Reduce the fraction: \(\frac{5}{13}=\frac{n}{13}\) - step2: Swap the sides: \(\frac{n}{13}=\frac{5}{13}\) - step3: Multiply both sides of the equation by \(13:\) \(\frac{n}{13}\times 13=\frac{5}{13}\times 13\) - step4: Multiply the terms: \(n=5\) Solve the equation \( 18/12=n/6 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{18}{12}=\frac{n}{6}\) - step1: Reduce the fraction: \(\frac{3}{2}=\frac{n}{6}\) - step2: Swap the sides: \(\frac{n}{6}=\frac{3}{2}\) - step3: Multiply both sides of the equation by \(6:\) \(\frac{n}{6}\times 6=\frac{3}{2}\times 6\) - step4: Multiply the terms: \(n=\frac{3\times 6}{2}\) - step5: Evaluate: \(n=9\) Solve the equation \( 3/n=27/108 \). Solve the equation by following steps: - step0: Solve for \(n\): \(\frac{3}{n}=\frac{27}{108}\) - step1: Find the domain: \(\frac{3}{n}=\frac{27}{108},n\neq 0\) - step2: Reduce the fraction: \(\frac{3}{n}=\frac{1}{4}\) - step3: Rewrite the expression: \(n=3\times 4\) - step4: Evaluate: \(n=12\) - step5: Check if the solution is in the defined range: \(n=12,n\neq 0\) - step6: Find the intersection: \(n=12\) Here are the solutions for \( n \) in each proportion: 1. \( \frac{3}{n} = \frac{2}{4} \) Solving gives: \( n = 6 \) 2. \( \frac{5}{7} = \frac{n}{14} \) Solving gives: \( n = 10 \) 3. \( \frac{n}{5} = \frac{16}{20} \) Solving gives: \( n = 4 \) 4. \( \frac{14}{8} = \frac{n}{20} \) Solving gives: \( n = 35 \) 5. \( \frac{3}{n} = \frac{27}{108} \) Solving gives: \( n = 12 \) 6. \( 18: 12 = n: 6 \) Solving gives: \( n = 9 \) 7. \( 30: 78 = n: 13 \) Solving gives: \( n = 5 \) 8. \( n: 8 = 5: 10 \) Solving gives: \( n = 4 \) 9. \( 15: 2 = n: 8 \) Solving gives: \( n = 60 \) 10. \( 40: 72 = n: 9 \) Solving gives: \( n = 5 \) If you have any further questions or need additional help, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve for \( n \) in each proportion, one can cross-multiply and then simplify. For example, in the first equation \( \frac{3}{n} = \frac{2}{4} \), cross-multiplying gives \( 3 \cdot 4 = 2 \cdot n \). Simplifying this leads to \( 12 = 2n \), so \( n = 6 \). Now let's celebrate these nifty proportions! Did you know that proportions have been used since ancient times? They were essential in art, architecture, and even in the world of ratios and recipes! The golden ratio, for instance, is a famous mathematical ratio that not only brings harmony to structures but has also enchanted artists throughout history! If you're grappling with proportions, one common mistake is forgetting to simplify your fractions before cross-multiplying. For instance, \( \frac{2}{4} \) simply reduces to \( \frac{1}{2} \). Simplifying fractions at the right moment saves a lot of calculation fuss and helps avoid errors. So keep an eye out for those reductions!

Related Questions

Write down the next two terms for each geometric sequence. a \( 2 ; 4 ; 8 ; 16 ; \ldots \) b \( 5 ; 15 ; 45 ; \ldots \) c \( 3 ; 6 ; 12 ; 24 ; \ldots \) d \( 18 ; 6 ; 2 ; \ldots \) e \( 20 ; 10 ; 5 ; \ldots \) f \( 4 ;-12 ; 36 ; \ldots \) g \( 7 ;-14 ; 28 ; \ldots \) h \( 8 ; 4 ; 2 ; \ldots \) i \( \frac{1}{9} ; \frac{1}{3} ; 1 ; \ldots \) j \( 500(1,25) ; 500(1,25)^{2} ; 500(1,25)^{3} ; \ldots \) k \( 1000(1,8) ; 1000(1,8)^{2} ; 1000(1,8)^{3} ; \ldots \) i \( 6000(1,1) ; 6000(1,1)^{2} ; 6000(1,1)^{3} ; \ldots \) m \( 400\left(1+\frac{0,09}{12}\right) ; 400\left(1+\frac{0,09}{12}\right)^{2} ; 400\left(1+\frac{0,09}{12}\right)^{3} ; \ldots \) n \( 300\left(1+\frac{0,1125}{4}\right) ; 300\left(1+\frac{0,1125}{4}\right)^{2} ; 300\left(1+\frac{0,1125}{4}\right)^{3} ; \ldots \) o \( x\left(1+\frac{0,092}{2}\right) ; x\left(1+\frac{0,092}{2}\right)^{2} ; x\left(1+\frac{0,092}{2}\right)^{3} ; \ldots \) 2 Find the first three terms for each geometric sequence. a \( \mathrm{T}_{1}=2 \) and \( r=3 \) b \( \mathrm{T}_{1}=4 \) and \( r=\frac{1}{2} \) c \( \mathrm{T}_{1}=12 \) and \( r=\frac{-1}{3} \) d \( T_{1}=500 \) and \( r=1,1 \) e. \( \mathrm{T}_{1}=8000 \) and \( r=\left(1+\frac{0,09}{4}\right) \) f \( T_{1}=3 \) and \( T_{6}=96 \) g \( \quad T_{1}=7 \) and \( T_{5}=\frac{7}{81} \) h \( T_{2}=6 \) and \( T_{7}=192 \) \( T_{3}=18 \) and \( T_{5}=162 \) -d \( T_{3}=16 \) and \( T_{7}=256 \) k \( T_{2}=10 \) and \( T_{5}=80 \) I \( T_{2}=3 \) and \( T_{6}=\frac{1}{27} \) Determine: a which term is equal to 1280 in the sequence \( 5 ; 10 ; 20 ; \ldots \) b which term is equal to 1536 in the sequence \( 3 ; 6 ; 12 ; \ldots \) c which term is equal to 6561 in the sequence \( 3 ; 9 ; 27 ; \ldots \) d which term is equal to \( \frac{5}{16384} \) in the sequence \( \frac{5}{4} ; \frac{5}{8} ; \frac{5}{16} ; \ldots \) e which term is equal to \( \frac{1}{8192} \) in the sequence \( 16 ; 8 ; 4 ; \ldots \)

Latest Pre Algebra Questions

Write down the next two terms for each geometric sequence. a \( 2 ; 4 ; 8 ; 16 ; \ldots \) b \( 5 ; 15 ; 45 ; \ldots \) c \( 3 ; 6 ; 12 ; 24 ; \ldots \) d \( 18 ; 6 ; 2 ; \ldots \) e \( 20 ; 10 ; 5 ; \ldots \) f \( 4 ;-12 ; 36 ; \ldots \) g \( 7 ;-14 ; 28 ; \ldots \) h \( 8 ; 4 ; 2 ; \ldots \) i \( \frac{1}{9} ; \frac{1}{3} ; 1 ; \ldots \) j \( 500(1,25) ; 500(1,25)^{2} ; 500(1,25)^{3} ; \ldots \) k \( 1000(1,8) ; 1000(1,8)^{2} ; 1000(1,8)^{3} ; \ldots \) i \( 6000(1,1) ; 6000(1,1)^{2} ; 6000(1,1)^{3} ; \ldots \) m \( 400\left(1+\frac{0,09}{12}\right) ; 400\left(1+\frac{0,09}{12}\right)^{2} ; 400\left(1+\frac{0,09}{12}\right)^{3} ; \ldots \) n \( 300\left(1+\frac{0,1125}{4}\right) ; 300\left(1+\frac{0,1125}{4}\right)^{2} ; 300\left(1+\frac{0,1125}{4}\right)^{3} ; \ldots \) o \( x\left(1+\frac{0,092}{2}\right) ; x\left(1+\frac{0,092}{2}\right)^{2} ; x\left(1+\frac{0,092}{2}\right)^{3} ; \ldots \) 2 Find the first three terms for each geometric sequence. a \( \mathrm{T}_{1}=2 \) and \( r=3 \) b \( \mathrm{T}_{1}=4 \) and \( r=\frac{1}{2} \) c \( \mathrm{T}_{1}=12 \) and \( r=\frac{-1}{3} \) d \( T_{1}=500 \) and \( r=1,1 \) e. \( \mathrm{T}_{1}=8000 \) and \( r=\left(1+\frac{0,09}{4}\right) \) f \( T_{1}=3 \) and \( T_{6}=96 \) g \( \quad T_{1}=7 \) and \( T_{5}=\frac{7}{81} \) h \( T_{2}=6 \) and \( T_{7}=192 \) \( T_{3}=18 \) and \( T_{5}=162 \) -d \( T_{3}=16 \) and \( T_{7}=256 \) k \( T_{2}=10 \) and \( T_{5}=80 \) I \( T_{2}=3 \) and \( T_{6}=\frac{1}{27} \) Determine: a which term is equal to 1280 in the sequence \( 5 ; 10 ; 20 ; \ldots \) b which term is equal to 1536 in the sequence \( 3 ; 6 ; 12 ; \ldots \) c which term is equal to 6561 in the sequence \( 3 ; 9 ; 27 ; \ldots \) d which term is equal to \( \frac{5}{16384} \) in the sequence \( \frac{5}{4} ; \frac{5}{8} ; \frac{5}{16} ; \ldots \) e which term is equal to \( \frac{1}{8192} \) in the sequence \( 16 ; 8 ; 4 ; \ldots \)
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy