Question
upstudy study bank question image url

Comprosar las malrices: \( A=\left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \) y \( B=\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) \) que: a) \( (A+B)^{2}=A^{2}+2 A B+B^{2} \) b) \( (A-B)^{2}=A^{2}-2 A B+B^{2} \) c) \( (A+B)(A-B)=A^{2}-B^{2} \)

Ask by George Vega. in Equatorial Guinea
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las propiedades **a)**, **b)** y **c)** no se cumplen para las matrices \( A \) y \( B \) dadas. Esto se debe a que las matrices no conmutan, lo que hace que las igualdades no sean válidas en este caso.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

Para comprobar las fórmulas propuestas, primero calcularemos las matrices \( A^2 \), \( B^2 \) y \( AB \), y luego aplicaremos sumas y restas de matrices según corresponda. 1. **Cálculo de \( A^2 \), \( B^2 \) y \( AB \)**: \[ A^2 = A \cdot A = \left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \cdot \left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) = \left(\begin{array}{cc}1\cdot 1 + 2\cdot 3 & 1\cdot 2 + 2\cdot 0 \\ 3\cdot 1 + 0\cdot 3 & 3\cdot 2 + 0\cdot 0\end{array}\right) = \left(\begin{array}{cc}7 & 2 \\ 3 & 6\end{array}\right) \] \[ B^2 = B \cdot B = \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) \cdot \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) = \left(\begin{array}{cc}2\cdot 2 + -1\cdot 1 & 2\cdot -1 + -1\cdot 3 \\ 1\cdot 2 + 3\cdot 1 & 1\cdot -1 + 3\cdot 3\end{array}\right) = \left(\begin{array}{cc}3 & -5 \\ 5 & 8\end{array}\right) \] \[ AB = A \cdot B = \left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \cdot \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) = \left(\begin{array}{cc}1\cdot 2 + 2\cdot 1 & 1\cdot -1 + 2\cdot 3 \\ 3\cdot 2 + 0\cdot 1 & 3\cdot -1 + 0\cdot 3\end{array}\right) = \left(\begin{array}{cc}4 & 5 \\ 6 & -3\end{array}\right) \] 2. Ahora, verificamos cada una de las propiedades: a) **Verificación de \( (A+B)^{2}=A^{2}+2AB+B^{2} \)**: \[ A + B = \left(\begin{array}{cc}1+2 & 2-1 \\ 3+1 & 0+3\end{array}\right) = \left(\begin{array}{cc}3 & 1 \\ 4 & 3\end{array}\right) \] \[ (A+B)^{2} = (A+B)(A+B) = \left(\begin{array}{cc}3 & 1 \\ 4 & 3\end{array}\right) \cdot \left(\begin{array}{cc}3 & 1 \\ 4 & 3\end{array}\right) = \left(\begin{array}{cc}9 + 4 & 3 + 3 \\ 12 + 12 & 4 + 9\end{array}\right) = \left(\begin{array}{cc}13 & 6 \\ 24 & 13\end{array}\right) \] Y evaluamos \( A^{2} + 2AB + B^{2} \): \[ 2AB = 2 \left(\begin{array}{cc}4 & 5 \\ 6 & -3\end{array}\right) = \left(\begin{array}{cc}8 & 10 \\ 12 & -6\end{array}\right) \] \[ A^{2} + 2AB + B^{2} = \left(\begin{array}{cc}7 & 2 \\ 3 & 6\end{array}\right) + \left(\begin{array}{cc}8 &

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy