Comprosar las malrices: \( A=\left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \) y \( B=\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) \) que: a) \( (A+B)^{2}=A^{2}+2 A B+B^{2} \) b) \( (A-B)^{2}=A^{2}-2 A B+B^{2} \) c) \( (A+B)(A-B)=A^{2}-B^{2} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Para comprobar las fórmulas propuestas, primero calcularemos las matrices \( A^2 \), \( B^2 \) y \( AB \), y luego aplicaremos sumas y restas de matrices según corresponda. 1. **Cálculo de \( A^2 \), \( B^2 \) y \( AB \)**: \[ A^2 = A \cdot A = \left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \cdot \left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) = \left(\begin{array}{cc}1\cdot 1 + 2\cdot 3 & 1\cdot 2 + 2\cdot 0 \\ 3\cdot 1 + 0\cdot 3 & 3\cdot 2 + 0\cdot 0\end{array}\right) = \left(\begin{array}{cc}7 & 2 \\ 3 & 6\end{array}\right) \] \[ B^2 = B \cdot B = \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) \cdot \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) = \left(\begin{array}{cc}2\cdot 2 + -1\cdot 1 & 2\cdot -1 + -1\cdot 3 \\ 1\cdot 2 + 3\cdot 1 & 1\cdot -1 + 3\cdot 3\end{array}\right) = \left(\begin{array}{cc}3 & -5 \\ 5 & 8\end{array}\right) \] \[ AB = A \cdot B = \left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \cdot \left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) = \left(\begin{array}{cc}1\cdot 2 + 2\cdot 1 & 1\cdot -1 + 2\cdot 3 \\ 3\cdot 2 + 0\cdot 1 & 3\cdot -1 + 0\cdot 3\end{array}\right) = \left(\begin{array}{cc}4 & 5 \\ 6 & -3\end{array}\right) \] 2. Ahora, verificamos cada una de las propiedades: a) **Verificación de \( (A+B)^{2}=A^{2}+2AB+B^{2} \)**: \[ A + B = \left(\begin{array}{cc}1+2 & 2-1 \\ 3+1 & 0+3\end{array}\right) = \left(\begin{array}{cc}3 & 1 \\ 4 & 3\end{array}\right) \] \[ (A+B)^{2} = (A+B)(A+B) = \left(\begin{array}{cc}3 & 1 \\ 4 & 3\end{array}\right) \cdot \left(\begin{array}{cc}3 & 1 \\ 4 & 3\end{array}\right) = \left(\begin{array}{cc}9 + 4 & 3 + 3 \\ 12 + 12 & 4 + 9\end{array}\right) = \left(\begin{array}{cc}13 & 6 \\ 24 & 13\end{array}\right) \] Y evaluamos \( A^{2} + 2AB + B^{2} \): \[ 2AB = 2 \left(\begin{array}{cc}4 & 5 \\ 6 & -3\end{array}\right) = \left(\begin{array}{cc}8 & 10 \\ 12 & -6\end{array}\right) \] \[ A^{2} + 2AB + B^{2} = \left(\begin{array}{cc}7 & 2 \\ 3 & 6\end{array}\right) + \left(\begin{array}{cc}8 &