Which expression is equivalent to the given expression? Assume the denominator does not equal zero. \[ \left(\frac{3 c^{2} d^{4}}{2 c^{3} d^{3}}\right)^{3} \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To simplify the expression \(\left(\frac{3 c^{2} d^{4}}{2 c^{3} d^{3}}\right)^{3}\), we first simplify the fraction inside the parentheses. The expression in the fraction is: \[ \frac{3 c^{2} d^{4}}{2 c^{3} d^{3}} = \frac{3}{2} \cdot \frac{c^{2}}{c^{3}} \cdot \frac{d^{4}}{d^{3}} = \frac{3}{2} \cdot \frac{1}{c} \cdot d \] So, we can rewrite it as: \[ \frac{3d}{2c} \] Next, we raise this simplified fraction to the power of 3: \[ \left(\frac{3d}{2c}\right)^{3} = \frac{(3d)^{3}}{(2c)^{3}} = \frac{27d^{3}}{8c^{3}} \] Thus, the expression equivalent to the original expression is: \[ \frac{27d^{3}}{8c^{3}} \]