Question
upstudy study bank question image url

Simplify the following without using a calculator. \( \begin{array}{lll}\text { (a) } \sqrt{7} \sqrt{3} & \text { (b) } \sqrt{7} \sqrt{7}+(\sqrt{11})^{2} & \text { (c) }(2 \sqrt{3})^{2} \\ \text { (d) } 3 \sqrt{6}-\sqrt{6}+7 \sqrt{6} & \text { (c) } \sqrt[4]{3}+7 \sqrt[4]{3}-5 \sqrt[4]{3} & \text { (f) } \sqrt{3}+\sqrt{2} \\ \text { (d) } 2 \sqrt{18}-\sqrt{32} & \text { (h) } \frac{\sqrt{32}}{\sqrt{2}} & \text { (i) } \frac{\sqrt{51}}{2 \sqrt{3}}\end{array} \)

Ask by Chan Allan. in South Africa
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

(a) \( \sqrt{21} \) (b) \( 18 \) (c) \( 12 \) (d) \( 9 \sqrt{6} \) (e) \( 3 \sqrt[4]{3} \) (f) \( \sqrt{3} + \sqrt{2} \) (g) \( 2 \sqrt{2} \) (h) \( 4 \) (i) \( \frac{\sqrt{17}}{2} \)

Solution

Let's simplify each expression step by step without using a calculator. ### (a) \( \sqrt{7} \cdot \sqrt{3} \) Use the property \( \sqrt{a} \cdot \sqrt{b} = \sqrt{ab} \): \[ \sqrt{7} \cdot \sqrt{3} = \sqrt{7 \times 3} = \sqrt{21} \] **Answer:** \( \sqrt{21} \) --- ### (b) \( \sqrt{7} \cdot \sqrt{7} + (\sqrt{11})^{2} \) Simplify each term: \[ \sqrt{7} \cdot \sqrt{7} = \sqrt{7^2} = 7 \] \[ (\sqrt{11})^{2} = 11 \] Add them: \[ 7 + 11 = 18 \] **Answer:** \( 18 \) --- ### (c) \( (2 \sqrt{3})^{2} \) Square the expression: \[ (2 \sqrt{3})^{2} = 2^2 \cdot (\sqrt{3})^2 = 4 \cdot 3 = 12 \] **Answer:** \( 12 \) --- ### (d) \( 3 \sqrt{6} - \sqrt{6} + 7 \sqrt{6} \) Combine like terms: \[ 3 \sqrt{6} - \sqrt{6} + 7 \sqrt{6} = (3 - 1 + 7) \sqrt{6} = 9 \sqrt{6} \] **Answer:** \( 9 \sqrt{6} \) --- ### (e) \( \sqrt[4]{3} + 7 \sqrt[4]{3} - 5 \sqrt[4]{3} \) Combine like terms: \[ \sqrt[4]{3} + 7 \sqrt[4]{3} - 5 \sqrt[4]{3} = (1 + 7 - 5) \sqrt[4]{3} = 3 \sqrt[4]{3} \] **Answer:** \( 3 \sqrt[4]{3} \) --- ### (f) \( \sqrt{3} + \sqrt{2} \) This expression is already in its simplest form as the terms contain different radicals. **Answer:** \( \sqrt{3} + \sqrt{2} \) --- ### (g) \( 2 \sqrt{18} - \sqrt{32} \) Simplify each radical: \[ \sqrt{18} = \sqrt{9 \times 2} = 3 \sqrt{2} \] \[ \sqrt{32} = \sqrt{16 \times 2} = 4 \sqrt{2} \] Substitute back: \[ 2 \sqrt{18} - \sqrt{32} = 2 \times 3 \sqrt{2} - 4 \sqrt{2} = 6 \sqrt{2} - 4 \sqrt{2} = 2 \sqrt{2} \] **Answer:** \( 2 \sqrt{2} \) --- ### (h) \( \frac{\sqrt{32}}{\sqrt{2}} \) Simplify the fraction: \[ \frac{\sqrt{32}}{\sqrt{2}} = \sqrt{\frac{32}{2}} = \sqrt{16} = 4 \] **Answer:** \( 4 \) --- ### (i) \( \frac{\sqrt{51}}{2 \sqrt{3}} \) Rationalize the denominator: \[ \frac{\sqrt{51}}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{51 \times 3}}{2 \times 3} = \frac{\sqrt{153}}{6} \] Simplify \( \sqrt{153} \): \[ \sqrt{153} = \sqrt{9 \times 17} = 3 \sqrt{17} \] Substitute back: \[ \frac{3 \sqrt{17}}{6} = \frac{\sqrt{17}}{2} \] **Answer:** \( \frac{\sqrt{17}}{2} \) --- All parts have been simplified as requested.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Sure! Here are the simplified forms of each expression: (a) \( \sqrt{7} \sqrt{3} = \sqrt{21} \) (b) \( \sqrt{7} \sqrt{7} + (\sqrt{11})^{2} = 7 + 11 = 18 \) (c) \( (2 \sqrt{3})^{2} = 4 \cdot 3 = 12 \) (d) \( 3 \sqrt{6} - \sqrt{6} + 7 \sqrt{6} = (3 - 1 + 7) \sqrt{6} = 9 \sqrt{6} \) (e) \( \sqrt[4]{3} + 7 \sqrt[4]{3} - 5 \sqrt[4]{3} = (1 + 7 - 5) \sqrt[4]{3} = 3 \sqrt[4]{3} \) (f) \( \sqrt{3} + \sqrt{2} \) remains as is, since it cannot be simplified further. (g) \( 2 \sqrt{18} - \sqrt{32} = 2 \cdot 3 \sqrt{2} - 4 \sqrt{2} = 6 \sqrt{2} - 4 \sqrt{2} = 2 \sqrt{2} \) (h) \( \frac{\sqrt{32}}{\sqrt{2}} = \sqrt{\frac{32}{2}} = \sqrt{16} = 4 \) (i) \( \frac{\sqrt{51}}{2 \sqrt{3}} = \frac{1}{2} \cdot \frac{\sqrt{51}}{\sqrt{3}} = \frac{\sqrt{51}}{2\sqrt{3}} \) remains as is, as it cannot be further simplified without a calculator.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy