Question
upstudy study bank question image url

\( f(x)=\left\{\begin{array}{l}2^{x} \text { para }-1 \leq x \leq 1 \\ \frac{1}{x} \text { parax }>1\end{array} \quad\right. \), , calcule \( \mathrm{f}(0)-\mathrm{f}(3 / 2) \)

Ask by Chan Coles. in Brazil
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( f(0) - f\left(\frac{3}{2}\right) = \frac{1}{3} \)

Solution

Para calcular \( f(0) - f\left(\frac{3}{2}\right) \) para a função definida por partes: \[ f(x) = \begin{cases} 2^{x} & \text{para } -1 \leq x \leq 1 \\ \frac{1}{x} & \text{para } x > 1 \end{cases} \] **Passo 1: Calcular \( f(0) \)** Como \( 0 \) está no intervalo \(-1 \leq x \leq 1\), usamos a primeira parte da função: \[ f(0) = 2^{0} = 1 \] **Passo 2: Calcular \( f\left(\frac{3}{2}\right) \)** Como \( \frac{3}{2} > 1 \), usamos a segunda parte da função: \[ f\left(\frac{3}{2}\right) = \frac{1}{\frac{3}{2}} = \frac{2}{3} \] **Passo 3: Subtrair os resultados** \[ f(0) - f\left(\frac{3}{2}\right) = 1 - \frac{2}{3} = \frac{1}{3} \] **Resposta Final:** \[ f(0) - f\left(\frac{3}{2}\right) = \frac{1}{3} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Para calcular \( f(0) - f\left(\frac{3}{2}\right) \), primero evaluamos \( f(0) \). Dado que \( 0 \) está en el rango de \(-1 \leq x \leq 1\), usamos la primera parte de la función: \[ f(0) = 2^0 = 1 \] Ahora evaluamos \( f\left(\frac{3}{2}\right) \). Dado que \( \frac{3}{2} > 1\), usamos la segunda parte de la función: \[ f\left(\frac{3}{2}\right) = \frac{1}{\frac{3}{2}} = \frac{2}{3} \] Por lo tanto, ahora podemos calcular \( f(0) - f\left(\frac{3}{2}\right) \): \[ f(0) - f\left(\frac{3}{2}\right) = 1 - \frac{2}{3} = \frac{3}{3} - \frac{2}{3} = \frac{1}{3} \] La respuesta final es: \[ f(0) - f\left(\frac{3}{2}\right) = \frac{1}{3} \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy